2,483 research outputs found

    Numerical Simulations of the Lyman-alpha forest - A comparison of Gadget-2 and Enzo

    Full text link
    We compare simulations of the Lyman-alpha forest performed with two different hydrodynamical codes, Gadget-2 and Enzo. A comparison of the dark matter power spectrum for simulations run with identical initial conditions show differences of 1-3% at the scales relevant for quantitative studies of the Lyman-alpha forest. This allows a meaningful comparison of the effect of the different implementations of the hydrodynamic part of the two codes. Using the same cooling and heating algorithm in both codes the differences in the temperature and the density probability distribution function are of the order of 10%. These differences can be mainly attributed to a slight mismatch in the resolution. The differences are smaller than or equal to the effects of boxsize and resolution on these statistics. Once resolution effects are taken into account the differences in the flux power spectrum - the statistics most widely used for estimating the matter power spectrum and cosmological parameters from Lyman-alpha forest data - are about 5%. This is again smaller than or equal to the effects of boxsize and resolution. Numerical uncertainties due to a particular implementation of solving the hydrodynamic or gravitational equations appear therefore to contribute only moderately to the error budget in estimates of the flux power spectrum from numerical simulations. We further find that the differences in the flux power spectrum for Enzo simulations run with and without adaptive mesh refinement are also of order 5% or smaller. The latter require 10 times less CPU time making the CPU time requirement similar to that of a version of Gadget-2 that is optimised for Lyman-alpha forest simulations.Comment: 10 pages, 8 figures. Submitted to MNRA

    The effect of neutrinos on the matter distribution as probed by the Intergalactic Medium

    Full text link
    We present a suite of full hydrodynamical cosmological simulations that quantitatively address the impact of neutrinos on the (mildly non-linear) spatial distribution of matter and in particular on the neutral hydrogen distribution in the Intergalactic Medium (IGM), which is responsible for the intervening Lyman-alpha absorption in quasar spectra. The free-streaming of neutrinos results in a (non-linear) scale-dependent suppression of power spectrum of the total matter distribution at scales probed by Lyman-alpha forest data which is larger than the linear theory prediction by about 25% and strongly redshift dependent. By extracting a set of realistic mock quasar spectra, we quantify the effect of neutrinos on the flux probability distribution function and flux power spectrum. The differences in the matter power spectra translate into a ~2.5% (5%) difference in the flux power spectrum for neutrino masses with Sigma m_{\nu} = 0.3 eV (0.6 eV). This rather small effect is difficult to detect from present Lyman-alpha forest data and nearly perfectly degenerate with the overall amplitude of the matter power spectrum as characterised by sigma_8. If the results of the numerical simulations are normalized to have the same sigma_8 in the initial conditions, then neutrinos produce a smaller suppression in the flux power of about 3% (5%) for Sigma m_{\nu} = 0.6eV(1.2eV)whencomparedtoasimulationwithoutneutrinos.WepresentconstraintsonneutrinomassesusingtheSloanDigitalSkySurveyfluxpowerspectrumaloneandfindanupperlimitofSigmamν<0.9 eV (1.2 eV) when compared to a simulation without neutrinos. We present constraints on neutrino masses using the Sloan Digital Sky Survey flux power spectrum alone and find an upper limit of Sigma m_{\nu} < 0.9 eV (2 sigma C.L.), comparable to constraints obtained from the cosmic microwave background data or other large scale structure probes.Comment: 38 pages, 21 figures. One section and references added. JCAP in pres

    Expansion and Collapse in the Cosmic Web

    Get PDF
    We study the kinematics of the gaseous cosmic web at high redshift with Lyman alpha forest absorption in multiple QSO sightlines. Using a simple analytic model and a cosmological hydrodynamic simulation we constrain the underlying three-dimensional distribution of velocities from the observed line-of-sight distribution of velocity shear across the plane of the sky. The distribution is found to be in good agreement with the intergalactic medium (IGM) undergoing large scale motions dominated by the Hubble flow. Modeling the Lyman alpha clouds analytically and with a hydrodynamics simulation, the average expansion velocity of the gaseous structures causing the Lyman alpha forest in the lower redshift (z = 2) sample appears about 20 percent lower than the local Hubble expansion velocity. We interpret this as tentative evidence for some clouds undergoing gravitational collapse. However, the distribution of velocities is highly skewed, and the majority of clouds at redshifts from 2 to 3.8 expand typically about 5 - 20 percent faster than the Hubble flow. This behavior is explained if most absorbers in the column density range typically detectable are expanding filaments that stretch and drain into more massive nodes. We find no evidence for the observed distribution of velocity shear being significantly influenced by processes other than Hubble expansion and gravitational instability, like galactic winds. To avoid overly disturbing the IGM, winds may be old and/or limp by the time we observe them in the Lyman alpha forest, or they may occupy only an insignificant volume fraction of the IGM. (abridged)Comment: 63 pages, 26 figures, AAS Latex; ApJ, in pres

    Galactic winds and extended Lyα emission from the host galaxies of high column density quasi-stellar object absorption systems

    Get PDF
    We present three-dimensional (3D) resonant radiative transfer simulations of the spatial and spectral diffusion of the Lyα radiation from a central source in the host galaxies of high column density absorption systems at z∼ 3. The radiative transfer simulations are based on a suite of cosmological galaxy formation simulations which reproduce a wide range of observed properties of damped Lyα absorption systems. The Lyα emission is predicted to be spatially extended up to several arcsec, and the spectral width of the Lyα emission is broadened to several hundred (in some case more than thousand) km s−1. The distribution and the dynamical state of the gas in the simulated galaxies are complex, the latter with significant contributions from rotation and both in- and out-flows. The emerging Lyα radiation extends to gas with column densities of NH I∼ 1018 cm−2 and its spectral shape varies strongly with viewing angle. The strong dependence on the central H i column density and the H i velocity field suggests that the Lyα emission will also vary strongly with time on time-scales of a few dynamical times of the central region. Such variations with time should be especially pronounced at times where the host galaxy undergoes a major merger and/or starburst. Depending on the pre-dominance of in- or out-flow along a given sightline and the central column density, the spectra show prominent blue peaks, red peaks or double-peaked profiles. Both spatial distribution and spectral shape are very sensitive to details of the galactic wind implementation. Stronger galactic winds result in more spatially extended Lyα emission and - somewhat counterintuitively - a narrower spectral distributio

    Braneworld inflation from an effective field theory after WMAP three-year data

    Get PDF
    In light of the results from the WMAP three-year sky survey, we study an inflationary model based on a single-field polynomial potential, with up to quartic terms in the inflaton field. Our analysis is performed in the context of the Randall-Sundrum II braneworld theory, and we consider both the high-energy and low-energy (i.e. the standard cosmology case) limits of the theory. We examine the parameter space of the model, which leads to both large-field and small-field inflationary type solutions. We conclude that small field inflation, for a potential with a negative mass square term, is in general favored by current bounds on the tensor-to-scalar perturbation ratio rs.Comment: 11 pages, 5 figures; references updated and a few comments added; final version to appear in Phys. Rev.

    Possible evidence for an inverted temperature-density relation in the intergalactic medium from the flux distribution of the Lyman-alpha forest

    Get PDF
    We compare the improved measurement of the Lya forest flux probability distribution at 1.7<z<3.2 presented by Kim et al. (2007) to a large set of hydrodynamical simulations of the Lya forest with different cosmological parameters and thermal histories. The simulations are in good agreement with the observational data if the temperature-density relation for the low density intergalactic medium (IGM), T=T_0 Delta^{gamma-1}, is either close to isothermal or inverted (gamma<1). Our results suggest that the voids in the IGM may be significantly hotter and the thermal state of the low density IGM may be substantially more complex than is usually assumed at these redshifts. We discuss radiative transfer effects which alter the spectral shape of ionising radiation during the epoch of HeII reionisation as a possible physical mechanism for achieving an inverted temperature-density relation at z~3.Comment: 16 pages, 6 figures, accepted for publication in MNRAS following minor revision. The accepted version includes an expanded discussion of the flux power spectru

    Constraining Warm Dark Matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest

    Get PDF
    The matter power spectrum at comoving scales of (1-40) h^{-1} Mpc is very sensitive to the presence of Warm Dark Matter (WDM) particles with large free streaming lengths. We present constraints on the mass of WDM particles from a combined analysis of the matter power spectrum inferred from the large samples of high resolution high signal-to-noise Lyman-alpha forest data of Kim et al. (2004) and Croft et al. (2002) and the cosmic microwave background data of WMAP. We obtain a lower limit of m_wdm > 550 eV (2 sigma for early decoupled thermal relics and m_wdm > 2.0 keV (2 sigma) for sterile neutrinos. We also investigate the case where in addition to cold dark matter a light thermal gravitino with fixed effective temperature contributes significantly to the matter density. In that case the gravitino density is proportional to its mass, and we find an upper limit m_{3/2} < 16 eV (2 sigma). This translates into a bound on the scale of supersymmetry breaking, Lambda_{susy} < 260 TeV, for models of supersymmetric gauge mediation in which the gravitino is the lightest supersymmetric particle.Comment: 10 pages, 5 figures, 1 table. PRD in pres

    The sizes of mini-voids in the local universe: an argument in favor of a warm dark matter model?

    Full text link
    Using high-resolution simulations within the Cold and Warm Dark Matter models we study the evolution of small scale structure in the Local Volume, a sphere of 8 Mpc radius around the Local Group. We compare the observed spectrum of mini-voids in the Local Volume with the spectrum of mini-voids determined from the simulations. We show that the \LWDM model can easily explain both the observed spectrum of mini-voids and the presence of low-mass galaxies observed in the Local Volume, provided that all haloes with circular velocities greater than 20 km/s host galaxies. On the contrary within the LCDM model the distribution of the simulated mini-voids reflects the observed one if haloes with maximal circular velocities larger than 35 km/s host galaxies. This assumption is in contradiction with observations of galaxies with circular velocities as low as 20 km/s in our Local Universe. A potential problem of the LWDM model could be the late formation of the haloes in which the gas can be efficiently photo-evaporated. Thus star formation is suppressed and low-mass haloes might not host any galaxy at all.Comment: 13 pages, 10 figures, version 2, subsection 3.1 added, accepted to MNRA

    Gamma-ray spectrometry for distinguishing acid and basic rocks of the serra geral formation, in the serra gaúcha wine region, Brazil.

    Get PDF
    The gamma-ray spectrometric research has allowed for observation of the distribution of radioactive elements such as K, U and Th for recognizing the radioactive signatures of different rock types. The objective of this study was to evaluate the possibility to distinguish between acid and basic rocks of the Serra Geral Formation, in the Serra Gaúcha wine region in the state of Rio Grande do Sul (Brazil) through gamma-ray spectrometry techniques. This study contributed to geologically... Keywords: geophysical method, wine terroir, volcanic rock. A pesquisa por gamaespectrometria tem permitido observar a distribuição de elementos radioativos, tais como K, U e Th reconhecendo as assinaturas radioativas de diferentes tipos de rocha. O objetivo deste estudo foi avaliar a possibilidade de distinguir entre as rochas ácidas e básicas da Formação Serra Geral, na região vitivinícola Serra Gaúcha, no estado do Rio Grande do Sul (Brasil) por meio de técnicas de gamaespectrometria Palavras-chave: m´étodos geofísicos, terroir vitivinícola, rocha vulcânica
    corecore