847 research outputs found

    Juxtaposition of Spin Freezing and Long Range Order in a Series of Geometrically Frustrated Antiferromagnetic Gadolinium Garnets

    Full text link
    Specific heat measurements in zero magnetic field are presented on a homologous series of geometrically frustrated, antiferromagnetic, Heisenberg garnet systems. Measurements of Gd3Ga5O12, grown with isotopically pure Gd, agree well with previous results on samples with naturally abundant Gd, showing no ordering features. In contrast, samples of Gd3Te2Li3O12 and Gd3Al5O12 are found to exhibit clear ordering transitions at 243 mK and 175 mK respectively. The effects of low level disorder are studied through dilution of Gd3+ with non-magnetic Y3+ in Gd3Te2Li3O12. A thorough structural characterization, using X-ray diffraction, is performed on all of the samples studied. We discuss possible explanations for such diverse behavior in very similar systems.Comment: Accepted for publication in Physical Review

    On Measuring Non-Recursive Trade-Offs

    Full text link
    We investigate the phenomenon of non-recursive trade-offs between descriptional systems in an abstract fashion. We aim at categorizing non-recursive trade-offs by bounds on their growth rate, and show how to deduce such bounds in general. We also identify criteria which, in the spirit of abstract language theory, allow us to deduce non-recursive tradeoffs from effective closure properties of language families on the one hand, and differences in the decidability status of basic decision problems on the other. We develop a qualitative classification of non-recursive trade-offs in order to obtain a better understanding of this very fundamental behaviour of descriptional systems

    Evolution of porosity in carbide-derived carbon aerogels

    Get PDF
    Carbide-derived carbon (CDC) aerogel monoliths with very high porosity are synthesized starting from polymeric precursors. Cross-linking by platinum-catalyzed hydrosilylation of polycarbosilanes followed by supercritical drying yields preceramic aerogels. After ceramic conversion and silicon extraction in hot chlorine gas, hierarchically porous carbon materials with specific surface areas as high as 2122 m² g⁻¹ and outstanding total pore volumes close to 9 cm³ g⁻¹ are obtained. Their pore structure is controllable by the applied synthesis temperature as shown by combined nitrogen (-196 °C) and carbon dioxide (0 °C) measurements coupled with electron microscopic methods. The combination of large micropore volumes and the aerogel-type pore system leads to advanced adsorption properties due to a combination of large storage capacities and effective materials transport in comparison with purely microporous reference materials as shown by thermal response measurements

    Occurrence and greater intensity of estrus in recipient lactating dairy cows improve pregnancy per embryo transfer.

    Get PDF
    The aim of this study was to determine the association between occurrence and intensity of estrous expression with pregnancy success in recipient lactating dairy cows subjected to embryo transfer (ET). Two observational studies were conducted. Holstein cows were synchronized using the same timed ET protocol, based on estradiol and progesterone in both experiments. At 9 d after the end of the timed ET protocol only animals that had ovulated were implanted with a 7-d embryo [experiment 1 (Exp. 1); n = 1,401 ET events from 1,045 cows, and experiment 2 (Exp. 2); n = 1,147 ET events from 657 cows]. Embryos were produced in vivo (Exp. 1 and Exp. 2) and in vitro (only Exp. 2), then transferred to recipient cows as fresh or frozen-thawed. Pregnancy was confirmed at 29 and 58 d after the end of timed ET protocol. In Exp. 1, animals had their estrous expression monitored through a tail chalk applied on the tail head of the cows and evaluated daily for chalk removal (no estrus: 100% of chalk remaining; estrus: <50% of chalk remaining). In Exp. 2, cows were continuously monitored by a leg-mounted automated activity monitor. Estrous expression was quantified using the relative increase in physical activity at estrus in relation to the days before estrus. Estrous expression was classified as no estrus [<100% relative increase in activity (RI)], weak intensity (100-299% RI), and strong intensity (≥300% RI). Data were analyzed by analysis of variance using mixed linear regression models (GLIMMIX) in SAS (SAS Institute Inc.). A total of 65.2% (914/1,401) and 89.2% (1,019/1,142) of cows from Exp. 1 and Exp. 2, respectively, displayed estrus at the end of the ovulation synchronization protocol. In Exp. 1, cows expressing estrus before to ET had greater pregnancy per ET than those that did not [41.0 ± 2.3% (381/914) vs. 31.5 ± 2.9% (151/487), respectively]. Similarly, in Exp. 2, cows classified in the strong intensity group had greater pregnancy per ET compared with cows in the weak intensity and no estrus groups [41.3 ± 2.2% (213/571) vs. 32.7 ± 2.7% (115/353) vs. 11.3 ± 3.5% (26/218), respectively]. There was no effect of ET type on pregnancy per ET in Exp. 1. However, in Exp. 2, cows that received an in vivo-produced embryo, either fresh or frozen, had greater pregnancy per ET compared with cows that received in vitro-produced embryo. Cows receiving embryos in the early blastocyst and blastocyst stage had greater fertility compared with cows receiving embryos in the morula stage. There was an interaction between the occurrence of estrus and the stage of embryo development on pregnancy per ET, cows which displayed estrus and received a morula or early blastocyst had greater pregnancy per ET than cows that did not display estrus. In conclusion, the occurrence and the intensity of estrous expression improved pregnancy per ET in recipient lactating dairy cows and thus could be used as a tool to assist in the decision making of reproduction strategies in dairy farms

    Regeneration versus scarring in vertebrate appendages and heart

    Get PDF
    Injuries to complex human organs, such as the limbs and the heart, result in pathological conditions, for which we often lack adequate treatments. While modern regenerative approaches are based on the transplantation of stem cell-derived cells, natural regeneration in lower vertebrates, such as zebrafish and newts, relies predominantly on the intrinsic plasticity of mature tissues. This property involves local activation of the remaining material at the site of injury to promote cell division, cell migration and complete reproduction of the missing structure. It remains an unresolved question why adult mammals are not equally competent to reactivate morphogenetic programmes. Although organ regeneration depends strongly on the proliferative properties of cells in the injured tissue, it is apparent that various organismic factors, such as innervation, vascularization, hormones, metabolism and the immune system, can affect this process. Here, we focus on a correlation between the regenerative capacity and cellular specialization in the context of functional demands, as illustrated by appendages and heart in diverse vertebrates. Elucidation of the differences between homologous regenerative and non-regenerative tissues from various animal models is essential for understanding the applicability of lessons learned from the study of regenerative biology to clinical strategies for the treatment of injured human organs

    Evaluation of simulated CO<sub>2</sub> power plant plumes from six high-resolution atmospheric transport models

    Get PDF
    Global anthropogenic CO2 sources are dominated by power plants and large industrial facilities. Quantifying the emissions of these point sources is therefore one of the main goals of the planned constellation of anthropogenic CO2 monitoring satellites (CO2M) of the European Copernicus program. Atmospheric transport models may be used to study the capabilities of such satellites through observing system simulation experiments and to quantify emissions in an inverse modelling framework. How realistically the CO2 plumes of power plants can be simulated and how strongly the results may depend on model type and resolution, however, is not well known due to a lack of observations available for benchmarking. Here, we use the unique data set of aircraft in-situ and remote sensing observations collected during the CoMet measurement campaign down-wind of the coal fired power plants at Bełchatów in Poland and Jaenschwalde in Germany in 2018 to evaluate the simulations of six different atmospheric transport models

    Kroll-carbons based on silica and alumina templates as high-rate electrode materials in electrochemical double-layer capacitors

    Get PDF
    Hierarchical Kroll-carbons (KCs) with combined micro- and mesopore systems are prepared from silica and alumina templates by a reductive carbochlorination reaction of fumed silica and alumina nanoparticles inside a dense carbon matrix. The resulting KCs offer specific surface areas close to 2000 m2 g−1 and total pore volumes exceeding 3 cm3 g−1, resulting from their hierarchical pore structure. High micropore volumes of 0.39 cm3 g−1 are achieved in alumina-based KCs due to the enhanced carbon etching reaction being mainly responsible for the evolution of porosity. Mesopore sizes are uniform and precisely controllable over a wide range by the template particle dimensions. The possibility of directly recycling the process exhaust gases for the template synthesis and the use of renewable carbohydrates as the carbon source lead to a scalable and efficient alternative to classical hard- and soft templating approaches for the production of mesoporous and hierarchical carbon materials. Silica- and alumina-based Kroll-carbons are versatile electrode materials in electrochemical double-layer capacitors (EDLCs). Specific capacitances of up to 135 F g−1 in an aqueous electrolyte (1 M sulfuric acid) and 174 F g−1 in ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate) are achieved when measured in a symmetric cell configuration up to voltages of 0.6 and 2.5 V, respectively. 90% of the capacitance can be utilized at high current densities (20 A g−1) and room temperature rendering Kroll-carbons as attractive materials for EDLC electrodes resulting in high capacities and high rate performance due to the combined presence of micro- and mesopores

    Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation

    Get PDF
    Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA), which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation. © 2014 Keyel et al
    corecore