428 research outputs found

    The interplay of university and industry through the FP5 network

    Full text link
    To improve the quality of life in a modern society it is essential to reduce the distance between basic research and applications, whose crucial roles in shaping today's society prompt us to seek their understanding. Existing studies on this subject, however, have neglected the network character of the interaction between university and industry. Here we use state-of-the-art network theory methods to analyze this interplay in the so-called Framework Programme--an initiative which sets out the priorities for the European Union's research and technological development. In particular we study in the 5th Framework Programme (FP5) the role played by companies and scientific institutions and how they contribute to enhance the relationship between research and industry. Our approach provides quantitative evidence that while firms are size hierarchically organized, universities and research organizations keep the network from falling into pieces, paving the way for an effective knowledge transfer.Comment: 21 pages (including Appendix), 8 figures. Published online at http://stacks.iop.org/1367-2630/9/18

    Biowaiver monographs for immediate release solid oral dosage forms: acetaminophen (paracetamol).

    Get PDF
    Literature data are reviewed on the properties of acetaminophen (paracetamol) related to the biopharmaceutics classification system (BCS). According to the current BCS criteria, acetaminophen is BCS Class III compound. Differences in composition seldom, if ever, have an effect on the extent of absorption. However, some studies show differences in rate of absorption between brands and formulations. In particular, sodium bicarbonate, present in some drug products, was reported to give an increase in the rate of absorption, probably caused by an effect on gastric emptying. In view of Marketing Authorizations (MAs) given in a number of countries to acetaminophen drug products with rapid onset of action, it is concluded that differences in rate of absorption were considered therapeutically not relevant by the Health Authorities. Moreover, in view of its therapeutic use, its wide therapeutic index and its uncomplicated pharmacokinetic properties, in vitro dissolution data collected according to the relevant Guidances can be safely used for declaring bioequivalence (BE) of two acetaminophen formulations. Therefore, accepting a biowaiver for immediate release (IR) acetaminophen solid oral drug products is considered scientifically justified, if the test product contains only those excipients reported in this paper in their usual amounts and the test product is rapidly dissolving, as well as the test product fulfils the criterion of similarity of dissolution profiles to the reference product

    A method to predict infinity values for biexponential processes

    Full text link
    An equation is presented which allows infinity values for biexponential processes to be predicted in the early nonlinear phase when samples are taken at equal time intervals. This equation is independent of the value or ratio of the rate constants involved in the process. However, this method is very sensitive to noise normally associated with urine data.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45077/1/10928_2005_Article_BF01062539.pd

    Advanced Technologies for Oral Controlled Release: Cyclodextrins for oral controlled release

    Get PDF
    Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug-drug or drug-additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g. as osmotic pumps) and/ or hydrophobic CDs. New controlled delivery systems based on nanotechonology carriers (nanoparticles and conjugates) have also been reviewed

    Time to reach steady state and prediction of steady-state concentrations for drugs obeying Michaelis-Menten elimination kinetics

    Full text link
    Using a numerical integration method, concentration-time data were simulated using the one-compartment open model both with bolus intravenous administration and oral administration (first-order absorption) after multiple doses administered at constant time intervals and for each model for five different doses. Constants used produced data very similar to those which have been reported for phenytoin in the literature. In the simulation of oral data, sufficient concentrations were recorded to allow estimation of the maximum (C n max ), average (¯) C n , and minimum (C n min ) concentrations during each dosage interval, but for the intravenous data only C n max and C n min values were recorded. The approach to steady state was monoexponential for low doses and biexponential for higher doses. The half-life of the final first-order approach to the steady-state concentration was approximately linearly related to the final steady-state concentration. For the intravenous data the number of doses required to reach 95% of C ss min was a linear function of 0.95 C ss min . A simple difference plot allows any given steady-state concentration of the three to be estimated from non-steady-state concentrations. When C n min values are measured, as in therapeutic drug monitoring, the fitting of C ss min vs. dose rate (D/τ) data leads to operationally useful parameters, V m app and K m app , which are not the true kinetic parameters, V m and K m , whereas fitting of ¯C ss vs d/τ data does lead to estimation of V m and K m .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45075/1/10928_2005_Article_BF01312263.pd

    Drug Absorption Modeling as a Tool to Define the Strategy in Clinical Formulation Development

    Get PDF
    The purpose of this mini review is to discuss the use of physiologically-based drug absorption modeling to guide the formulation development. Following an introduction to drug absorption modeling, this article focuses on the preclinical formulation development. Case studies are presented, where the emphasis is not only the prediction of absolute exposure values, but also their change with altered input values. Sensitivity analysis of technologically relevant parameters, like the drug’s particle size, dose and solubility, is presented as the basis to define the clinical formulation strategy. Taking the concept even one step further, the article shows how the entire design space for drug absorption can be constructed. This most accurate prediction level is mainly foreseen once clinical data is available and an example is provided using mefenamic acid as a model drug. Physiologically-based modeling is expected to be more often used by formulators in the future. It has the potential to become an indispensable tool to guide the formulation development of challenging drugs, which will help minimize both risks and costs of formulation development

    Quantification of gastrointestinal liquid volumes and distribution following a 240 mL dose of water in the fasted state

    Get PDF
    Previous imaging studies offered a snapshot of water distribution in fasted humans and showed that water in the small intestine is distributed in small pockets. This study aimed to quantify the volume and number of water pockets in the upper gut of fasted healthy humans following ingestion of a glass of water (240 mL, as recommended for bioavailability/bioequivalence (BA/BE) studies), using recently validated noninvasive magnetic resonance imaging (MRI) methods. Twelve healthy volunteers underwent upper and lower abdominal MRI scans before drinking 240 mL (8 fluid ounces) of water. After ingesting the water, they were scanned at intervals for 2 h. The drink volume, inclusion criteria, and fasting conditions matched the international standards for BA/BE testing in healthy volunteers. The images were processed for gastric and intestinal total water volumes and for the number and volume of separate intestinal water pockets larger than 0.5 mL. The fasted stomach contained 35 ± 7 mL (mean ± SEM) of resting water. Upon drinking, the gastric fluid rose to 242 ± 9 mL. The gastric water volume declined rapidly after that with a half emptying time (T50%) of 13 ± 1 min. The mean gastric volume returned back to baseline 45 min after the drink. The fasted small bowel contained a total volume of 43 ± 14 mL of resting water. Twelve minutes after ingestion of water, small bowel water content rose to a maximum value of 94 ± 24 mL contained within 15 ± 2 pockets of 6 ± 2 mL each. At 45 min, when the glass of water had emptied completely from the stomach, total intestinal water volume was 77 ± 15 mL distributed into 16 ± 3 pockets of 5 ± 1 mL each. MRI provided unprecedented insights into the time course, number, volume, and location of water pockets in the stomach and small intestine under conditions that represent standard BA/BE studies using validated techniques. These data add to our current understanding of gastrointestinal physiology and will help improve physiological relevance of in vitro testing methods and in silico transport analyses for prediction of bioperformance of oral solid dosage forms, particularly for low solubility Biopharmaceutics Classification System (BCS) Class 2 and Class 4 compounds

    FDA Critical Path Initiatives: Opportunities for Generic Drug Development

    Get PDF
    FDA’s critical path initiative documents have focused on the challenges involved in the development of new drugs. Some of the focus areas identified apply equally to the production of generic drugs. However, there are scientific challenges unique to the development of generic drugs as well. In May 2007, FDA released a document “Critical Path Opportunities for Generic Drugs” that identified some of the specific challenges in the development of generic drugs. The key steps in generic product development are usually characterization of the reference product, design of a pharmaceutically equivalent and bioequivalent product, design of a consistent manufacturing process and conduct of the pivotal bioequivalence study. There are several areas of opportunity where scientific progress could accelerate the development and approval of generic products and expand the range of products for which generic versions are available, while maintaining high standards for quality, safety, and efficacy. These areas include the use of quality by design to develop bioequivalent products, more efficient bioequivalence methods for systemically acting drugs (expansion of BCS waivers, highly variable drugs), and development of new bioequivalence methods for locally acting drugs

    Individual Heterogeneity in the Returns to Schooling: Instrumental Variables Quantile Regression Using Twins Data

    Get PDF
    Considerable effort has been exercised in estimating mean returns to education while carefully considering biases arising from unmeasured ability and measurement error. Recent work has investigated whether there are variations from the “mean” return to education across the population with mixed results. We use an instrumental variables estimator for quantile regression on a sample of twins to estimate an entire family of returns to education at different quantiles of the conditional distribution of wages while addressing simultaneity and measurement error biases. We test whether there is individual heterogeneity in returns to education and find that: more able individuals obtain more schooling and that higher ability individuals (those further to the right in the conditional distribution of wages) have higher returns to schooling consistent with a non-trivial interaction between schooling and unobserved abilities in the generation of earnings. The estimated returns are never lower than 9 percent and can be as high as 13 percent at the top of the conditional distribution of wages but they vary significantly only along the lower to middle quantiles. Our findings may have meaningful implications for the design of educational policies
    corecore