374 research outputs found

    Studies on the aetiology of kiwifruit decline: interaction between soil-borne pathogens and waterlogging

    Get PDF
    Aims: In 2012, Italian kiwifruit orchards were hit by a serious root disease of unknown aetiology (kiwifruit decline, KD) that still causes extensive damage to the sector. While waterlogging was soon observed to be associated with its outbreak, the putative role of soil microbiota remains unknown. This work investigates the role of these two factors in the onset of the disease. Methods: Historical rainfall data were analysed to identify changes that might explain KD outbreak and mimic the flooding conditions required to reproduce the disease in a controlled environment. A greenhouse experiment was thus designed, and vines were grown in either unsterilized (U) or sterilized (S) soil collected from KD-affected orchards, and subjected (F) or not (N) to artificial flooding. Treatments were compared in terms of mortality rate, growth, and tissue modifications. Results: KD symptoms were only displayed by FU-treated vines, with an incidence of 90%. Ultrastructural observations detected tyloses and fibrils in the xylem vessels of all plants, irrespective of the treatment. Phytopythium vexans and Phytopythium chamaehyphon, isolated from roots of FU plants, emerged as the associated microorganisms. Conclusions: We succeeded in reproducing KD under controlled conditions and confirmed its association with both waterlogging and soil-borne microorganism(s)

    Determinismo genético e molecular do metabolismo de diterpenos em Coffea spp.

    Get PDF
    Cafestol e caveol são os dois principais diterpenos presentes nos frutos de café. Esses compostos específicos do cafeeiro têm se mostrado importantes na saúde humana, induzindo alterações no colesterol e ações anti-cancerígenas. Apesar da sua importância, há pouca informação sobre os princípios genéticos e moleculares de seu metabolismo. Análises fenotípicas através de HPLC, com cafés de diferentes espécies (vários genótipos por espécie), indicam uma variabilidade importante para cafestol, caveol e 16OMC. As análises in silico dos EST de Coffea permitiram identificar cDNAs parciais correspondente a um gene de CPS, dois de KO e um de KS. Análises de expressão desses genes por RTq-PCR quantitativa, em tecidos separados durante o desenvolvimento dos frutos, estão em andamento. Resultados preliminares indicam que os quatro genes alvos apresentam expressão diferencial durante o desenvolvimento dos tecidos do fruto. Os resultados de expressão serão discutidos considerando o interesse na identificação dos genes potencialmente envolvidos na regulação da concentração de cafestol e caveol

    Humans Lack iGb3 Due to the Absence of Functional iGb3-Synthase: Implications for NKT Cell Development and Transplantation

    Get PDF
    The glycosphingolipid isoglobotrihexosylceramide, or isogloboside 3 (iGb3), is believed to be critical for natural killer T (NKT) cell development and self-recognition in mice and humans. Furthermore, iGb3 may represent an important obstacle in xenotransplantation, in which this lipid represents the only other form of the major xenoepitope Galα(1,3)Gal. The role of iGb3 in NKT cell development is controversial, particularly with one study that suggested that NKT cell development is normal in mice that were rendered deficient for the enzyme iGb3 synthase (iGb3S). We demonstrate that spliced iGb3S mRNA was not detected after extensive analysis of human tissues, and furthermore, the iGb3S gene contains several mutations that render this product nonfunctional. We directly tested the potential functional activity of human iGb3S by expressing chimeric molecules containing the catalytic domain of human iGb3S. These hybrid molecules were unable to synthesize iGb3, due to at least one amino acid substitution. We also demonstrate that purified normal human anti-Gal immunoglobulin G can bind iGb3 lipid and mediate complement lysis of transfected human cells expressing iGb3. Collectively, our data suggest that iGb3S is not expressed in humans, and even if it were expressed, this enzyme would be inactive. Consequently, iGb3 is unlikely to represent a primary natural ligand for NKT cells in humans. Furthermore, the absence of iGb3 in humans implies that it is another source of foreign Galα(1,3)Gal xenoantigen, with obvious significance in the field of xenotransplantation

    Customized bioreactor enables the production of 3D diaphragmatic constructs influencing matrix remodeling and fibroblast overgrowth

    Get PDF
    The production of skeletal muscle constructs useful for replacing large defects in vivo, such as in congenital diaphragmatic hernia (CDH), is still considered a challenge. The standard application of prosthetic material presents major limitations, such as hernia recurrences in a remarkable number of CDH patients. With this work, we developed a tissue engineering approach based on decellularized diaphragmatic muscle and human cells for the in vitro generation of diaphragmatic-like tissues as a proof-of-concept of a new option for the surgical treatment of large diaphragm defects. A customized bioreactor for diaphragmatic muscle was designed to control mechanical stimulation and promote radial stretching during the construct engineering. In vitro tests demonstrated that both ECM remodeling and fibroblast overgrowth were positively influenced by the bioreactor culture. Mechanically stimulated constructs also increased tissue maturation, with the formation of new oriented and aligned muscle fibers. Moreover, after in vivo orthotopic implantation in a surgical CDH mouse model, mechanically stimulated muscles maintained the presence of human cells within myofibers and hernia recurrence did not occur, suggesting the value of this approach for treating diaphragm defects

    Discordance between Liver Biopsy and FibroScan® in Assessing Liver Fibrosis in Chronic Hepatitis B: Risk Factors and Influence of Necroinflammation

    Get PDF
    BACKGROUND: Few studies have investigated predictors of discordance between liver biopsy (LB) and liver stiffness measurement (LSM) using FibroScan®. We assessed predictors of discordance between LB and LSM in chronic hepatitis B (CHB) and investigated the effects of necroinflammatory activity. METHODS: In total, 150 patients (107 men, 43 women) were prospectively enrolled. Only LSM with ≥ 10 valid measurements was considered reliable. Liver fibrosis was evaluated using the Laennec system. LB specimens <15 mm in length were considered ineligible. Reference cutoff LSM values to determine discordance were calculated from our cohort (6.0 kPa for ≥ F2, 7.5 kPa for ≥ F3, and 9.4 kPa for F4). RESULTS: A discordance, defined as a discordance of at least two stages between LB and LSM, was identified in 21 (14.0%) patients. In multivariate analyses, fibrosis stages F3-4 and F4 showed independent negative associations with discordance (P = 0.002; hazard ratio [HR], 0.073; 95% confidence interval [CI], 0.014-0.390 for F3-4 and P = 0.014; HR, 0.067; 95% CI, 0.008-0.574 for F4). LSM values were not significantly different between maximal activity grades 1-2 and 3-4 in F1 and F2 fibrosis stages, whereas LSM values were significantly higher in maximal activity grade 3-4 than 1-2 in F3 and F4 fibrosis stage (median 8.6 vs. 11.3 kPa in F3, P = 0.049; median 11.9 vs. 19.2 kPa in F4, P = 0.009). CONCLUSION: Advanced fibrosis stage (F3-4) or cirrhosis (F4) showed a negative correlation with discordance between LB and LSM in patients with CHB, and maximal activity grade 3-4 significantly influenced LSM values in F3 and F4

    A Concerted Action of Hepatitis C Virus P7 and Nonstructural Protein 2 Regulates Core Localization at the Endoplasmic Reticulum and Virus Assembly

    Get PDF
    Hepatitis C virus (HCV) assembly remains a poorly understood process. Lipid droplets (LDs) are thought to act as platforms for the assembly of viral components. The JFH1 HCV strain replicates and assembles in association with LD-associated membranes, around which viral core protein is predominantly detected. In contrast, despite its intrinsic capacity to localize to LDs when expressed individually, we found that the core protein of the high-titer Jc1 recombinant virus was hardly detected on LDs of cell culture-grown HCV (HCVcc)-infected cells, but was mainly localized at endoplasmic reticulum (ER) membranes where it colocalized with the HCV envelope glycoproteins. Furthermore, high-titer cell culture-adapted JFH1 virus, obtained after long-term culture in Huh7.5 cells, exhibited an ER-localized core in contrast to non-adapted JFH1 virus, strengthening the hypothesis that ER localization of core is required for efficient HCV assembly. Our results further indicate that p7 and NS2 are HCV strain-specific factors that govern the recruitment of core protein from LDs to ER assembly sites. Indeed, using expression constructs and HCVcc recombinant genomes, we found that p7 is sufficient to induce core localization at the ER, independently of its ion-channel activity. Importantly, the combined expression of JFH1 or Jc1 p7 and NS2 induced the same differential core subcellular localization detected in JFH1- vs. Jc1-infected cells. Finally, results obtained by expressing p7-NS2 chimeras between either virus type indicated that compatibilities between the p7 and the first NS2 trans-membrane domains is required to induce core-ER localization and assembly of extra- and intra-cellular infectious viral particles. In conclusion, we identified p7 and NS2 as key determinants governing the subcellular localization of HCV core to LDs vs. ER and required for initiation of the early steps of virus assembly

    Biochemical Characterization of a Recombinant TRIM5  Protein That Restricts Human Immunodeficiency Virus Type 1 Replication

    Get PDF
    The rhesus monkey intrinsic immunity factor TRIM5αrh recognizes incoming capsids from a variety of retroviruses, including human immunodeficiency virus type 1 (HIV-1) and equine infectious anemia virus (EIAV), and inhibits the accumulation of viral reverse transcripts. However, direct interactions between restricting TRIM5α proteins and retroviral capsids have not previously been demonstrated using pure recombinant proteins. To facilitate structural and mechanistic studies of retroviral restriction, we have developed methods for expressing and purifying an active chimeric TRIM5αrh protein containing the RING domain from the related human TRIM21 protein. This recombinant TRIM5-21R protein was expressed in SF-21 insect cells and purified through three chromatographic steps. Two distinct TRIM5-21R species were purified and shown to correspond to monomers and dimers, as analyzed by analytical ultracentrifugation. Chemically cross-linked recombinant TRIM5-21R dimers and mammalian-expressed TRIM5-21R and TRIM5α proteins exhibited similar sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobilities, indicating that mammalian TRIM5α proteins are predominantly dimeric. Purified TRIM5-21R had ubiquitin ligase activity and could autoubquitylate with different E2 ubiquitin conjugating enzymes in vitro. TRIM5-21R bound directly to synthetic capsids composed of recombinant HIV-1 CA-NC proteins and to authentic EIAV core particles. HIV-1 CA-NC assemblies bound dimeric TRIM5-21R better than either monomeric TRIM5-21R or TRIM5-21R constructs that lacked the SPRY domain or its V1 loop. Thus, our studies indicate that TRIM5α proteins are dimeric ubiquitin E3 ligases that recognize retroviral capsids through direct interactions mediated by the SPRY domain and demonstrate that these activities can be recapitulated in vitro using pure recombinant proteins

    Syndecan 4 Is Involved in Mediating HCV Entry through Interaction with Lipoviral Particle-Associated Apolipoprotein E

    Get PDF
    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and HCV infection represents a major health problem. HCV associates with host lipoproteins forming host/viral hybrid complexes termed lipoviral particles. Apolipoprotein E (apoE) is a lipoprotein component that interacts with heparan sulfate proteoglycans (HSPG) to mediate hepatic lipoprotein uptake, and may likewise mediate HCV entry. We sought to define the functional regions of apoE with an aim to identify critical apoE binding partners involved in HCV infection. Using adenoviral vectors and siRNA to modulate apoE expression we show a direct correlation of apoE expression and HCV infectivity, whereas no correlation exists with viral protein expression. Mutating the HSPG binding domain (HSPG-BD) of apoE revealed key residues that are critical for mediating HCV infection. Furthermore, a novel synthetic peptide that mimics apoE's HSPG-BD directly and competitively inhibits HCV infection. Genetic knockdown of the HSPG proteins syndecan (SDC) 1 and 4 revealed that SDC4 principally mediates HCV entry. Our data demonstrate that HCV uses apoE-SDC4 interactions to enter hepatoma cells and establish infection. Targeting apoE-SDC interactions could be an alternative strategy for blocking HCV entry, a critical step in maintaining chronic HCV infection
    corecore