2,823 research outputs found

    Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    Full text link
    Project GRAND is a 100m x 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m^2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-penetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE Fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within plus or minus five degrees of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7 sigma) is for the event that was predicted to be the most likely to be observed (GRB 971110).Comment: To be presented at the XXVIII International Cosmic Ray Conference, Tsukuba, Japa

    Divergence of the Chaotic Layer Width and Strong Acceleration of the Spatial Chaotic Transport in Periodic Systems Driven by an Adiabatic ac Force

    Full text link
    We show for the first time that a {\it weak} perturbation in a Hamiltonian system may lead to an arbitrarily {\it wide} chaotic layer and {\it fast} chaotic transport. This {\it generic} effect occurs in any spatially periodic Hamiltonian system subject to a sufficiently slow ac force. We explain it and develop an explicit theory for the layer width, verified in simulations. Chaotic spatial transport as well as applications to the diffusion of particles on surfaces, threshold devices and others are discussed.Comment: 4 pages including 3 EPS figures, this is an improved version of the paper (accepted to PRL, 2005

    The PS 40 MHz bunching cavity

    Get PDF
    A 40 MHz cavity has been designed and built at CERN as part of the preparation of the PS as injector for LHC. The cavity will provide the necessary bunch spacing of 25 ns prior to injection into SPS and subsequently LHC. The mechanical design of the copper coated steel cavity was dominated by space constraints in the PS tunnel and by vacuum requirements. The salient design features described are i) tight, multipactor-free, capacitive coupling from the power amplifier, ii) fast RF feedback, iii) inductively coupled tuners, iv) an efficient, pneumatically operated gap short-circuit. The operation cycle consists of an adiabatic capture up to 100 kV gap voltage, a non-adiabatic jump to 300 kV, and subsequent bunch rotation. The multipactor voltage level at the gap lies below the operating voltage range and is easily passed through. A fast RF feedback system with a total group delay of 220 ns copes with heavy beam loading (1011 protons/bunch) and prevents unwanted interaction with other beams in the PS. The cavity has recently been installed, the nominal gap voltage of 300 kV has been attained, and bunch lengths below 8 ns have been achieved in first tests at nominal intensity. Experimental results are reported

    Diffusion on a solid surface: Anomalous is normal

    Get PDF
    We present a numerical study of classical particles diffusing on a solid surface. The particles' motion is modeled by an underdamped Langevin equation with ordinary thermal noise. The particle-surface interaction is described by a periodic or a random two dimensional potential. The model leads to a rich variety of different transport regimes, some of which correspond to anomalous diffusion such as has recently been observed in experiments and Monte Carlo simulations. We show that this anomalous behavior is controlled by the friction coefficient, and stress that it emerges naturally in a system described by ordinary canonical Maxwell-Boltzmann statistics

    Role of doped layers in dephasing of 2D electrons in quantum well structures

    Full text link
    The temperature and gate voltage dependences of the phase breaking time are studied experimentally in GaAs/InGaAs heterostructures with single quantum well. It is shown that appearance of states at the Fermi energy in the doped layers leads to a significant decrease of the phase breaking time of the carriers in quantum well and to saturation of the phase breaking time at low temperature.Comment: 4 pages, 6 figure

    Effects of pressure on diffusion and vacancy formation in MgO from non-empirical free-energy integrations

    Full text link
    The free energies of vacancy pair formation and migration in MgO were computed via molecular dynamics using free-energy integrations and a non-empirical ionic model with no adjustable parameters. The intrinsic diffusion constant for MgO was obtained at pressures from 0 to 140 GPa and temperatures from 1000 to 5000 K. Excellent agreement was found with the zero pressure diffusion data within experimental error. The homologous temperature model which relates diffusion to the melting curve describes well our high pressure results within our theoretical framework.Comment: 4 pages, latex, 1 figure, revtex, submitted to PR

    Reconciling Semiclassical and Bohmian Mechanics: III. Scattering states for continuous potentials

    Full text link
    In a previous paper [J. Chem. Phys. 121 4501 (2004)] a unique bipolar decomposition, Psi = Psi1 + Psi2 was presented for stationary bound states Psi of the one-dimensional Schroedinger equation, such that the components Psi1 and Psi2 approach their semiclassical WKB analogs in the large action limit. The corresponding bipolar quantum trajectories, as defined in the usual Bohmian mechanical formulation, are classical-like and well-behaved, even when Psi has many nodes, or is wildly oscillatory. A modification for discontinuous potential stationary stattering states was presented in a second paper [J. Chem. Phys. 124 034115 (2006)], whose generalization for continuous potentials is given here. The result is an exact quantum scattering methodology using classical trajectories. For additional convenience in handling the tunneling case, a constant velocity trajectory version is also developed.Comment: 16 pages and 14 figure

    Fracture in Three-Dimensional Fuse Networks

    Full text link
    We report on large scale numerical simulations of fracture surfaces using random fuse networks for two very different disorders. There are some properties and exponents that are different for the two distributions, but others, notably the roughness exponents, seem universal. For the universal roughness exponent we found a value of zeta = 0.62 +/- 0.05. In contrast to what is observed in two dimensions, this value is lower than that reported in experimental studies of brittle fractures, and rules out the minimal energy surface exponent, 0.41 +/- 0.01.Comment: 4 pages, RevTeX, 5 figures, Postscrip

    Probing Evidence of Cerebral White Matter Microstructural Disruptions in Ischemic Heart Disease Before and Following Cardiac Rehabilitation: A Diffusion Tensor MR Imaging Study.

    Get PDF
    BACKGROUND: Ischemic heart disease (IHD) is linked to brain white matter (WM) breakdown but how age or disease effects WM integrity, and whether it is reversible using cardiac rehabilitation (CR), remains unclear. PURPOSE: To assess the effects of brain aging, cardiovascular disease, and CR on WM microstructure in brains of IHD patients following a cardiac event. STUDY TYPE: Retrospective. POPULATION: Thirty-five IHD patients (9 females; mean age = 59 ± 8 years), 21 age-matched healthy controls (10 females; mean age = 59 ± 8 years), and 25 younger controls (14 females; mean age = 26 ± 4 years). FIELD STRENGTH/SEQUENCE: 3 T diffusion-weighted imaging with single-shot echo planar imaging acquired at 3 months and 9 months post-cardiac event. ASSESSMENT: Tract-based spatial statistics (TBSS) and tractometry were used to compare fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) in cerebral WM between: 1) older and younger controls to distinguish age-related from disease-related WM changes; 2) IHD patients at baseline (pre-CR) and age-matched controls to investigate if cardiovascular disease exacerbates age-related WM changes; and 3) IHD patients pre-CR and post-CR to investigate the neuroplastic effect of CR on WM microstructure. STATISTICAL TESTS: Two-sample unpaired t-test (age: older vs. younger controls; IHD: IHD pre-CR vs. age-matched controls). One-sample paired t-test (CR: IHD pre- vs. post-CR). Statistical threshold: P \u3c 0.05 (FWE-corrected). RESULTS: TBSS and tractometry revealed widespread WM changes in older controls compared to younger controls while WM clusters of decreased FA in the fornix and increased MD in body of corpus callosum were observed in IHD patients pre-CR compared to age-matched controls. Robust WM improvements (increased FA, increased AD) were observed in IHD patients post-CR. DATA CONCLUSION: In IHD, both brain aging and cardiovascular disease may contribute to WM disruptions. IHD-related WM disruptions may be favorably modified by CR. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2
    corecore