865 research outputs found

    Electron-phonon interaction in the solid form of the smallest fullerene C20_{20}

    Full text link
    The electron-phonon coupling of a theoretically devised carbon phase made by assembling the smallest fullerenes C20_{20} is calculated from first principles. The structure consists of C20_{20} cages in an {\it fcc} lattice interlinked by two bridging carbon atoms in the interstitial tetrahedral sites ({\it fcc}-C22_{22}). The crystal is insulating but can be made metallic by doping with interstitial alkali atoms. In the compound NaC22_{22} the calculated coupling constant λ/N(0)\lambda/N(0) is 0.28 eV, a value much larger than in C60_{60}, as expected from the larger curvature of C20_{20}. On the basis of the McMillan's formula, the calculated λ\lambda=1.12 and a μ\mu^* assumed in the range 0.3-0.1 a superconducting Tc_c in the range 15-55 K is predicted.Comment: 7 page

    New insight into cataract formation -- enhanced stability through mutual attraction

    Get PDF
    Small-angle neutron scattering experiments and molecular dynamics simulations combined with an application of concepts from soft matter physics to complex protein mixtures provide new insight into the stability of eye lens protein mixtures. Exploring this colloid-protein analogy we demonstrate that weak attractions between unlike proteins help to maintain lens transparency in an extremely sensitive and non-monotonic manner. These results not only represent an important step towards a better understanding of protein condensation diseases such as cataract formation, but provide general guidelines for tuning the stability of colloid mixtures, a topic relevant for soft matter physics and industrial applications.Comment: 4 pages, 4 figures. Accepted for publication on Phys. Rev. Let

    Suppression of inelastic bound state resonance effects by the dimensionality of atom-surface scattering event

    Full text link
    We develop a multidimensional coupled channel method suitable for studying the interplay of bound state resonance and phonon assisted scattering of inert gas atoms from solid surfaces in one, two and three dimensions. This enables us to get insight into the features that depend on the dimensionality of inelastic resonant processes typically encountered in low energy He atom scattering from surfaces, in general, and to elaborate on the observability of recently conjectured near threshold resonances in scattering from Einstein phonons, in particular.Comment: 2 figure

    Effect of Hydrostatic Compression on the Energy of the 14.4-kev Gamma Ray from Fe^(57) in Iron

    Get PDF
    The energy of the recoil-free fraction of they rays emitted by nuclei bound in solids1 has been found to be affected by temperature and by electronic configuration. The latter effect has been named the "isomeric" shift. Compression of a solid should influence the energy through both of these mechanisms. We have measured the effect of hydrostatic compression at 295°K on the energy hν of the recoil-free 14.4-kev γ rays emitted by 0.1-μsec Fe^(57) bound in metallic iron

    Spectrum and polarization of laser light scattered by solids

    Get PDF
    Laser light scattering from yttrium-iron garne

    Ionic conduction, rectification, and selectivity in single conical nanopores

    Get PDF
    Modern track-etching methods allow the preparation of membranes containing a single charged conical nanopore that shows high ionic permselectivity due to the electrical interactions of the surface pore charges with the mobile ions in the aqueous solution. The nanopore has potential applications in electrically assisted single-particle detection, analysis, and separation of biomolecules. We present a detailed theoretical and experimental account of the effects of pore radii and electrolyte concentration on the current-voltage and current-concentration curves. The physical model used is based on the Nernst-Planck and Poisson equations. Since the validity of continuum models for the description of ion transport under different voltages and concentrations is recognized as one of the main issues in the modeling of future applications, special attention is paid to the fundamental understanding of the electrical interactions between the nanopore fixed charges and the mobile charges confined in the reduced volume of the inside [email protected]

    Comparison of Bond Character in Hydrocarbons and Fullerenes

    Full text link
    We present a comparison of the bond polarizabilities for carbon-carbon bonds in hydrocarbons and fullerenes, using two different models for the fullerene Raman spectrum and the results of Raman measurements on ethane and ethylene. We find that the polarizabilities for single bonds in fullerenes and hydrocarbons compare well, while the double bonds in fullerenes have greater polarizability than in ethylene.Comment: 7 pages, no figures, uses RevTeX. (To appear in Phys. Rev. B.

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    An ellipsoidal mirror for focusing neutral atomic and molecular beams

    Get PDF
    Manipulation of atomic and molecular beams is essential to atom optics applications including atom lasers, atom lithography, atom interferometry and neutral atom microscopy. The manipulation of charge-neutral beams of limited polarizability, spin or excitation states remains problematic, but may be overcome by the development of novel diffractive or reflective optical elements. In this paper, we present the first experimental demonstration of atom focusing using an ellipsoidal mirror. The ellipsoidal mirror enables stigmatic off-axis focusing for the first time and we demonstrate focusing of a beam of neutral, ground-state helium atoms down to an approximately circular spot, (26.8±0.5) μm×(31.4±0.8) μm in size. The spot area is two orders of magnitude smaller than previous reflective focusing of atomic beams and is a critical milestone towards the construction of a high-intensity scanning helium microscope

    NEXUS/Physics: An interdisciplinary repurposing of physics for biologists

    Get PDF
    In response to increasing calls for the reform of the undergraduate science curriculum for life science majors and pre-medical students (Bio2010, Scientific Foundations for Future Physicians, Vision & Change), an interdisciplinary team has created NEXUS/Physics: a repurposing of an introductory physics curriculum for the life sciences. The curriculum interacts strongly and supportively with introductory biology and chemistry courses taken by life sciences students, with the goal of helping students build general, multi-discipline scientific competencies. In order to do this, our two-semester NEXUS/Physics course sequence is positioned as a second year course so students will have had some exposure to basic concepts in biology and chemistry. NEXUS/Physics stresses interdisciplinary examples and the content differs markedly from traditional introductory physics to facilitate this. It extends the discussion of energy to include interatomic potentials and chemical reactions, the discussion of thermodynamics to include enthalpy and Gibbs free energy, and includes a serious discussion of random vs. coherent motion including diffusion. The development of instructional materials is coordinated with careful education research. Both the new content and the results of the research are described in a series of papers for which this paper serves as an overview and context.Comment: 12 page
    corecore