193 research outputs found

    Charge Carrier Extraction by Linearly Increasing Voltage:Analytic framework and ambipolar transients

    Full text link
    Up to now the basic theoretical description of charge extraction by linearly increasing voltage (CELIV) is solved for a low conductivity approximation only. Here we present the full analytical solution, thus generalize the theoretical framework for this method. We compare the analytical solution and the approximated theory, showing that especially for typical organic solar cell materials the latter approach has a very limited validity. Photo-CELIV measurements on poly(3-hexyl thiophene-2,5-diyl):[6,6]-phenyl-C61 butyric acid methyl ester based solar cells were then evaluated by fitting the current transients to the analytical solution. We found that the fit results are in a very good agreement with the experimental observations, if ambipolar transport is taken into account, the origin of which we will discuss. Furthermore we present parametric equations for the mobility and the charge carrier density, which can be applied over the entire experimental range of parameters.Comment: 8 pages, 5 figure

    Anomalous conductance oscillations and half-metallicity in atomic Ag-O chains

    Get PDF
    Using spin density functional theory we study the electronic and magnetic properties of atomically thin, suspended chains containing silver and oxygen atoms in an alternating sequence. Chains longer than 4 atoms develop a half-metallic ground state implying fully spin polarized charge carriers. The conductances of the chains exhibit weak even-odd oscillations around an anomalously low value of 0.1G_0 (G_0 = 2e^2h) which coincide with the averaged experimental conductance in the long chain limit. The unusual conductance properties are explained in terms of a resonating-chain model which takes the reflection probability and phase-shift of a single bulk-chain interface as the only input. The model also explains the conductance oscillations for other metallic chains.Comment: 5 pages, 4 figure

    Establishing Visible Interferometer System Responses: Resolved and Unresolved Calibrators

    Full text link
    The propagation of errors through the uniform disk visibility function is examined. Implications of those errors upon measures of absolute visibility through optical and near-infrared interferometers are considered within the context of using calibration stars to establish system visibilities for these instruments. We suggest a simple ratio test to establish empirically whether or not the measured visibilities produced by such an instrument are relative (errors dominated by calibrator angular size prediction error) or absolute (errors dominated by measurement error).Comment: 20 pages, 7 figures, to be published in the PAS

    Effect of spatial resolution on the estimates of the coherence length of excitons in quantum wells

    Full text link
    We evaluate the effect of diffraction-limited resolution of the optical system on the estimates of the coherence length of 2D excitons deduced from the interferometric study of the exciton emission. The results are applied for refining our earlier estimates of the coherence length of a cold gas of indirect excitons in coupled quantum wells [S. Yang et al., Phys. Rev. Lett. 97, 187402(2006)]. We show that the apparent coherence length is well approximated by the quadratic sum of the actual exciton coherence length and the diffraction correction given by the conventional Abbe limit divided by 3.14. In practice, accounting for diffraction is necessary only when the coherence length is smaller than about one wavelength. The earlier conclusions regarding the strong enhancement of the exciton coherence length at low temperatures remain intact.Comment: 6 pages, 5 figure

    Thin film interference in the optomechanical response of micromechanical silicon cantilevers

    Full text link
    The mechanical response of uncoated silicon microcantilevers is shown to modulate as a function of incident wavelength. Cantilever motion is measured interferometrically, using phase sensitive detection in response to a mechanically chopped excitation source. Thin film interference modeling shows that the fraction of absorbed light within the cantilever varies periodically over the range of 450-1000 nm, in excellent agreement with the measurements. The results show that the optomechanical responsivity of these cantilevers can be tuned due to the effect via an appropriate selection of incident wavelength, incidence angle, lever thickness, and optical constants of the lever. (c) 2006 American Institute of Physics

    Rainbow scattering in the gravitational field of a compact object

    Get PDF
    We study the elastic scattering of a planar wave in the curved spacetime of a compact object such as a neutron star, via a heuristic model: a scalar field impinging upon a spherically symmetric uniform density star of radius R and mass M. For R<rc, there is a divergence in the deflection function at the light-ring radius rc ¼ 3GM=c2, which leads to spiral scattering (orbiting) and a backward glory; whereas for R>rc, there instead arises a stationary point in the deflection function which creates a caustic and rainbow scattering. As in nuclear rainbow scattering, there is an Airy-type oscillation on a Rutherford-like cross section, followed by a shadow zone. We show that, for R ∼ 3.5GM=c2, the rainbow angle lies close to 180°, and thus there arises enhanced backscattering and glory. We explore possible implications for gravitational wave astronomy and dark matter models

    Arago (1810): the first experimental result against the ether

    Get PDF
    95 years before Special Relativity was born, Arago attempted to detect the absolute motion of the Earth by measuring the deflection of starlight passing through a prism fixed to the Earth. The null result of this experiment gave rise to the Fresnel's hypothesis of an ether partly dragged by a moving substance. In the context of Einstein's Relativity, the sole frame which is privileged in Arago's experiment is the proper frame of the prism, and the null result only says that Snell's law is valid in that frame. We revisit the history of this premature first evidence against the ether theory and calculate the Fresnel's dragging coefficient by applying the Huygens' construction in the frame of the prism. We expose the dissimilar treatment received by the ray and the wave front as an unavoidable consequence of the classical notions of space and time.Comment: 16 pages. To appear in European Journal of Physic

    Slack Dynamics on an Unfurling String

    Full text link
    An arch will grow on a rapidly deployed thin string in contact with a rigid plane. We present a qualitative model for the growing structure involving the amplification, rectification, and advection of slack in the presence of a steady stress field, validate our assumptions with numerical experiments, and pose new questions about the spatially developing motions of thin objects.Comment: significant changes. removed one figur
    corecore