3,833 research outputs found

    Model for Anisotropic Directed Percolation

    Full text link
    We propose a simulation model to study the properties of directed percolation in two-dimensional (2D) anisotropic random media. The degree of anisotropy in the model is given by the ratio μ\mu between the axes of a semi-ellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model shows that the average number of bonds per site in 2D is an invariant equal to 2.8 independently of μ\mu. This result suggests that Sinai's theorem proposed originally for isotropic percolation is also valid for anisotropic directed percolation problems. The new invariant also yields a constant fractal dimension Df∼1.71D_{f} \sim 1.71 for all μ\mu, which is the same value found in isotropic directed percolation (i.e., μ=1\mu = 1).Comment: RevTeX, 9 pages, 3 figures. To appear in Phys.Rev.

    Research and experimental study for the development of a 1000 watt CW space environment S-band power amplifier

    Get PDF
    One thousand watt continuous wave space environment S band power amplifier developmen

    Frequency-Dependent Attenuation Analysis of Ground-Penetrating Radar Data

    Get PDF
    In the early 1990s, it was established empirically that, in many materials, ground-penetrating radar (GPR) attenuation is approximately linear with frequency over the bandwidth of a typical pulse. Further, a frequency-independent Q* parameter characterizes the slope of the band-limited attenuation versus frequency curve. Here, I derive the band-limited Q* function from a first-order Taylor expansion of the attenuation coefficient. This approach provides a basis for computing Q* from any arbitrary dielectric permittivity model. For Cole-Cole relaxation, I find good correlation between the first-order Q* approximation and Q* computed from linear fits to the attenuation coefficient curve over two-octave bands. The correlation holds over the primary relaxation frequency. For some materials, this relaxation occurs between 10 and 200 MHz, a typical frequency range for many GPR applications. Frequency-dependent losses caused by scattering and by the commonly overlooked problem of frequency-dependent reflection make it difficult or impossible to measure Q* from reflection data without a priori understanding of the materials. Despite these complications, frequency-dependent attenuation analysis of reflection data can provide valuable subsurface information. At two field sites, I find well-defined frequency-dependent attenuation anomalies associated with nonaqueous-phase liquid contaminants

    Sensitive gravity-gradiometry with atom interferometry: progress towards an improved determination of the gravitational constant

    Full text link
    We here present a high sensitivity gravity-gradiometer based on atom interferometry. In our apparatus, two clouds of laser-cooled rubidium atoms are launched in fountain configuration and interrogated by a Raman interferometry sequence to probe the gradient of gravity field. We recently implemented a high-flux atomic source and a newly designed Raman lasers system in the instrument set-up. We discuss the applications towards a precise determination of the Newtonian gravitational constant G. The long-term stability of the instrument and the signal-to-noise ratio demonstrated here open interesting perspectives for pushing the measurement precision below the 100 ppm level

    Universal Crossover between Efros-Shklovskii and Mott Variable-Range-Hopping Regimes

    Full text link
    A universal scaling function, describing the crossover between the Mott and the Efros-Shklovskii hopping regimes, is derived, using the percolation picture of transport in strongly localized systems. This function is agrees very well with experimental data. Quantitative comparison with experiment allows for the possible determination of the role played by polarons in the transport.Comment: 7 pages + 1 figure, Revte

    RV dysfunction by MRI is associated with elevated transpulmonary gradient and poor prognosis in patients with sickle cell associated pulmonary hypertension

    Get PDF
    Patients with sickle cell disease (SCD) and pulmonary hypertension (PH) have increased mortality. SCD-PH is often complicated by high cardiac output (CO) related to anemia. The transpulmonary gradient (TPG) reflects a pressure differential across the pulmonary vascular bed without the confounding effect of CO (PVR=TPG/CO). Based on the cardiac transplant literature, a TPG ≥ 12 mmHg indicates significant pulmonary arterial hypertension (PAH). With PH, there is often morphologic adaptation by the right ventricle (RV). In idiopathic PAH, RV dilation and decreased function have been correlated with poor prognosis. We hypothesize that patients with SCD and a TPG ≥ 12 mmHg would have lower functional capacity, increased mortality, and evidence of RV dysfunction on cardiac MRI (CMR)

    A bayesian meta-analysis of multiple treatment comparisons of systemic regimens for advanced pancreatic cancer

    Get PDF
    © 2014 Chan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: For advanced pancreatic cancer, many regimens have been compared with gemcitabine (G) as the standard arm in randomized controlled trials. Few regimens have been directly compared with each other in randomized controlled trials and the relative efficacy and safety among them remains unclear

    Multifractal properties of resistor diode percolation

    Full text link
    Focusing on multifractal properties we investigate electric transport on random resistor diode networks at the phase transition between the non-percolating and the directed percolating phase. Building on first principles such as symmetries and relevance we derive a field theoretic Hamiltonian. Based on this Hamiltonian we determine the multifractal moments of the current distribution that are governed by a family of critical exponents {ψl}\{\psi_l \}. We calculate the family {ψl}\{\psi_l \} to two-loop order in a diagrammatic perturbation calculation augmented by renormalization group methods.Comment: 21 pages, 5 figures, to appear in Phys. Rev.
    • …
    corecore