15 research outputs found

    Resistance to Mucosal Lysozyme Compensates for the Fitness Deficit of Peptidoglycan Modifications by Streptococcus pneumoniae

    Get PDF
    The abundance of lysozyme on mucosal surfaces suggests that successful colonizers must be able to evade its antimicrobial effects. Lysozyme has a muramidase activity that hydrolyzes bacterial peptidoglycan and a non-muramidase activity attributable to its function as a cationic antimicrobial peptide. Two enzymes (PgdA, a N-acetylglucosamine deacetylase, and Adr, an O-acetyl transferase) that modify different sites on the peptidoglycan of Streptococcus pneumoniae have been implicated in its resistance to lysozyme in vitro. Here we show that the antimicrobial effect of human lysozyme is due to its muramidase activity and that both peptidoglycan modifications are required for full resistance by pneumococci. To examine the contribution of lysozyme and peptidoglycan modifications during colonization of the upper respiratory tract, competition experiments were performed with wild-type and pgdAadr mutant pneumococci in lysozyme M-sufficient (LysM+/+) and -deficient (LysM−/−) mice. The wild-type strain out-competed the double mutant in LysM+/+, but not LysM−/− mice, indicating the importance of resistance to the muramidase activity of lysozyme during mucosal colonization. In contrast, strains containing single mutations in either pgdA or adr prevailed over the wild-type strain in both LysM+/+ and LysM−/− mice. Our findings demonstrate that individual peptidoglycan modifications diminish fitness during colonization. The competitive advantage of wild-type pneumococci in LysM+/+ but not LysM−/− mice suggests that the combination of peptidoglycan modifications reduces overall fitness, but that this is outweighed by the benefits of resistance to the peptidoglycan degrading activity of lysozyme

    Data from: O father where art thou? Paternity analyses in a natural population of the haploid-diploid seaweed Chrondrus crispus

    No full text
    The link between life history traits and mating systems in diploid organisms has been extensively addressed in the literature, whereas the degree of selfing and/or inbreeding in natural populations of haploid–diploid organisms, in which haploid gametophytes alternate with diploid sporophytes, has been rarely measured. Dioecy has often been used as a proxy for the mating system in these organisms. Yet, dioecy does not prevent the fusion of gametes from male and female gametophytes originating from the same sporophyte. This is likely a common occurrence when spores from the same parent are dispersed in clumps and recruit together. This pattern of clumped spore dispersal has been hypothesized to explain significant heterozygote deficiency in the dioecious haploid–diploid seaweed Chondrus crispus. Fronds and cystocarps (structures in which zygotes are mitotically amplified) were sampled in two 25 m2 plots located within a high and a low intertidal zone and genotyped at 5 polymorphic microsatellite loci in order to explore the mating system directly using paternity analyses. Multiple males sired cystocarps on each female, but only one of the 423 paternal genotypes corresponded to a field-sampled gametophyte. Nevertheless, larger kinship coefficients were detected between males siring cystocarps on the same female in comparison with males in the entire population, confirming restricted spermatial and clumped spore dispersal. Such dispersal mechanisms may be a mode of reproductive assurance due to nonmotile gametes associated with putatively reduced effects of inbreeding depression because of the free-living haploid stage in C. crispus

    The biosynthesis and functionality of the cell-wall of lactic acid bacteria.

    No full text
    The cell wall of lactic acid bacteria has the typical gram-positive structure made of a thick, multilayered peptidoglycan sacculus decorated with proteins, teichoic acids and polysaccharides, and surrounded in some species by an outer shell of proteins packed in a paracrystalline layer (S-layer). Specific biochemical or genetic data on the biosynthesis pathways of the cell wall constituents are scarce in lactic acid bacteria, but together with genomics information they indicate close similarities with those described in Escherichia coli and Bacillus subtilis, with one notable exception regarding the peptidoglycan precursor. In several species or strains of enterococci and lactobacilli, the terminal D-alanine residue of the muramyl pentapeptide is replaced by D-lactate or D-serine, which entails resistance to the glycopeptide antibiotic vancomycin. Diverse physiological functions may be assigned to the cell wall, which contribute to the technological and health-related attributes of lactic acid bacteria. For instance, phage receptor activity relates to the presence of specific substituents on teichoic acids and polysaccharides; resistance to stress (UV radiation, acidic pH) depends on genes involved in peptidoglycan and teichoic acid biosynthesis; autolysis is controlled by the degree of esterification of teichoic acids with D-alanine; mucosal immunostimulation may result from interactions between epithelial cells and peptidoglycan or teichoic acids
    corecore