11,138 research outputs found

    Universal Tomonaga-Luttinger liquid phases in one-dimensional strongly attractive SU(N) fermionic cold atoms

    Full text link
    A simple set of algebraic equations is derived for the exact low-temperature thermodynamics of one-dimensional multi-component strongly attractive fermionic atoms with enlarged SU(N) spin symmetry and Zeeman splitting. Universal multi-component Tomonaga-Luttinger liquid (TLL) phases are thus determined. For linear Zeeman splitting, the physics of the gapless phase at low temperatures belongs to the universality class of a two-component asymmetric TLL corresponding to spin-neutral N-atom composites and spin-(N-1)/2 single atoms. The equation of states is also obtained to open up the study of multi-component TLL phases in 1D systems of N-component Fermi gases with population imbalance.Comment: 12 pages, 3 figure

    Wilson ratio of Fermi gases in one dimension

    Get PDF
    We calculate the Wilson ratio of the one-dimensional Fermi gas with spin imbalance. The Wilson ratio of attractively interacting fermions is solely determined by the density stiffness and sound velocity of pairs and of excess fermions for the two-component Tomonaga-Luttinger liquid (TLL) phase. The ratio exhibits anomalous enhancement at the two critical points due to the sudden change in the density of states. Despite a breakdown of the quasiparticle description in one dimension, two important features of the Fermi liquid are retained, namely the specific heat is linearly proportional to temperature whereas the susceptibility is independent of temperature. In contrast to the phenomenological TLL parameter, the Wilson ratio provides a powerful parameter for testing universal quantum liquids of interacting fermions in one, two and three dimensions.Comment: 5+2 pages, 4+1 figures, Eq. (4) is proved, figures were refine

    Exactly solvable models and ultracold Fermi gases

    Full text link
    Exactly solvable models of ultracold Fermi gases are reviewed via their thermodynamic Bethe Ansatz solution. Analytical and numerical results are obtained for the thermodynamics and ground state properties of two- and three-component one-dimensional attractive fermions with population imbalance. New results for the universal finite temperature corrections are given for the two-component model. For the three-component model, numerical solution of the dressed energy equations confirm that the analytical expressions for the critical fields and the resulting phase diagrams at zero temperature are highly accurate in the strong coupling regime. The results provide a precise description of the quantum phases and universal thermodynamics which are applicable to experiments with cold fermionic atoms confined to one-dimensional tubes.Comment: based on an invited talk at Statphys24, Cairns (Australia) 2010. 16 pages, 6 figure

    Universal local pair correlations of Lieb-Liniger bosons at quantum criticality

    Full text link
    The one-dimensional Lieb-Liniger Bose gas is a prototypical many-body system featuring universal Tomonaga-Luttinger liquid (TLL) physics and free fermion quantum criticality. We analytically calculate finite temperature local pair correlations for the strong coupling Bose gas at quantum criticality using the polylog function in the framework of the Yang-Yang thermodynamic equations. We show that the local pair correlation has the universal value g(2)(0)2p/(nε)g^{(2)}(0)\approx 2 p/(n\varepsilon) in the quantum critical regime, the TLL phase and the quasi-classical region, where pp is the pressure per unit length rescaled by the interaction energy ε=22mc2\varepsilon=\frac{\hbar^2}{2m} c^2 with interaction strength cc and linear density nn. This suggests the possibility to test finite temperature local pair correlations for the TLL in the relativistic dispersion regime and to probe quantum criticality with the local correlations beyond the TLL phase. Furthermore, thermodynamic properties at high temperatures are obtained by both high temperature and virial expansion of the Yang-Yang thermodynamic equation.Comment: 8 pages, 6 figures, additional text and reference

    Universal behavior of giant electroresistance in epitaxial La0.67Ca0.33MnO3 thin films

    Full text link
    We report a giant resistance drop induced by dc electrical currents in La0.67Ca0.33MnO3 epitaxial thin films. Resistance of the patterned thin films decreases exponentially with increasing current and a maximum drop shows at the temperature of resistance peak Tp. Variation of resistance with current densities can be scaled below and above Tp, respectively. This work can be useful for the future applications of electroresistance.Comment: 13 pages, 4 figure

    Promotion of cooperation induced by nonlinear attractive effect in spatial Prisoner's Dilemma game

    Full text link
    We introduce nonlinear attractive effects into a spatial Prisoner's Dilemma game where the players located on a square lattice can either cooperate with their nearest neighbors or defect. In every generation, each player updates its strategy by firstly choosing one of the neighbors with a probability proportional to Aα\mathcal{A}^\alpha denoting the attractiveness of the neighbor, where A\mathcal{A} is the payoff collected by it and α\alpha (\geq0) is a free parameter characterizing the extent of the nonlinear effect; and then adopting its strategy with a probability dependent on their payoff difference. Using Monte Carlo simulations, we investigate the density ρC\rho_C of cooperators in the stationary state for different values of α\alpha. It is shown that the introduction of such attractive effect remarkably promotes the emergence and persistence of cooperation over a wide range of the temptation to defect. In particular, for large values of α\alpha, i.e., strong nonlinear attractive effects, the system exhibits two absorbing states (all cooperators or all defectors) separated by an active state (coexistence of cooperators and defectors) when varying the temptation to defect. In the critical region where ρC\rho_C goes to zero, the extinction behavior is power law-like ρC\rho_C \sim (bcb)β(b_c-b)^{\beta}, where the exponent β\beta accords approximatively with the critical exponent (β0.584\beta\approx0.584) of the two-dimensional directed percolation and depends weakly on the value of α\alpha.Comment: 7 pages, 4 figure

    The Heine-Stieltjes correspondence and the polynomial approach to the standard pairing problem

    Get PDF
    A new approach for solving the Bethe ansatz (Gaudin-Richardson) equations of the standard pairing problem is established based on the Heine-Stieltjes correspondence. For kk pairs of valence nucleons on nn different single-particle levels, it is found that solutions of the Bethe ansatz equations can be obtained from one (k+1)x(k+1) and one (n-1)x(k+1) matrices, which are associated with the extended Heine-Stieltjes and Van Vleck polynomials, respectively. Since the coefficients in these polynomials are free from divergence with variations in contrast to the original Bethe ansatz equations, the approach thus provides with a new efficient and systematic way to solve the problem, which, by extension, can also be used to solve a large class of Gaudin-type quantum many-body problems and to establish a new efficient angular momentum projection method for multi-particle systems.Comment: ReVTeX, 4 pages, no figur

    Decreased TRPM7 inhibits activities and induces apotosis of bladder cancer cells via ERK1/2 pathway

    Get PDF
    published_or_final_versio

    Integrable variant of the one-dimensional Hubbard model

    Get PDF
    A new integrable model which is a variant of the one-dimensional Hubbard model is proposed. The integrability of the model is verified by presenting the associated quantum R-matrix which satisfies the Yang-Baxter equation. We argue that the new model possesses the SO(4) algebra symmetry, which contains a representation of the η\eta-pairing SU(2) algebra and a spin SU(2) algebra. Additionally, the algebraic Bethe ansatz is studied by means of the quantum inverse scattering method. The spectrum of the Hamiltonian, eigenvectors, as well as the Bethe ansatz equations, are discussed
    corecore