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A new integrable model which is a variant of the one-dimensional Hubbard model
is proposed. The integrability of the model is verified by presenting the associated
quantumR-matrix which satisfies the Yang–Baxter equation. We argue that the
new model possesses the SO~4! algebra symmetry, which contains a representation
of theh-pairing SU~2! algebra and a spin SU~2! algebra. Additionally, the algebraic
Bethe ansatz is studied by means of the quantum inverse scattering method. The
spectrum of the Hamiltonian, eigenvectors, as well as the Bethe ansatz equations,
are discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1481956#

I. INTRODUCTION

Since the discovery of high temperature superconductivity in cuprates,1 a tremendous effort
has been made to uncover the mystery of this phenomenon. It is generally believed that the
strongly correlated electron systems behaving as non-Fermi liquids are closely related to super-
conducting materials. This has caused an intense study in strongly correlated electron systems.2–7

These systems possess various physical characteristics which are decisively dominated by the
competing interactions; e.g., the Coulomb interaction in the Hubbard model, spin fluctuations
through the antiferromagnetic coupling for the super-symmetric t-J model and current-density
correlated interaction inducing hole pairs of Cooper type superconductors in the one-dimensional
~1D! Bariev model. The 1D Hubbard model as a prototype among the strongly correlated electron
systems has attracted a substantial deal of interest in the study of integrable quantum field theory,
mathematical physics and condensed matter physics since its exact solution was achieved by Lieb
and Wu8 in 1968. Towards a complete understanding of the mathematical structure of the 1D
Hubbard model in the framework of the quantum inverse scattering method~QISM!, a fundamen-
tal advance was achieved by Shastry9 in demonstrating the integrability of the model. Specifically,
it was shown that a two-dimensional statistical covering model of two coupled symmetric six
vertex models provides a one parameter family of transfer matrices commuting with the Hamil-
tonian of the 1D Hubbard model. The algebraic formulation with respect to the integrability leads
to the quantumR-matrix9–12 which facilitates not only the algebraic Bethe ansatz solution,13 but
also the construction of the boost operator14 for the model. Remarkably, the Hamiltonian of the
Hubbard model was proved to exhibit the SO~4! symmetry by Yang and Zhang15 ~see also Ref.
16!. Besides the spin SU~2! algebra, the SO~4! algebra contains theh-pair SU~2! algebra with the
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raising operator creating an on-site pair of electrons with opposite spins. This can be interpreted as
a localized Cooper pair. A complete set of eigenstates of the Hamiltonian can be obtained by
exploiting the SO~4! symmetry.17

The 1D Hubbard Hamiltonian with more competing interactions may also be considered.
Along this line, many extended Hubbard models have been constructed in the literature, such as a
u(2u2) extended Hubbard model,5 supersymmetricUq(osp(2u2)) electronic systems18 and SU(N)
Hubbard models.19 In this article, we present an alternative 1D Hubbard model such that the
Hamiltonian has off-site Coulomb interaction instead of the on-site one of the standard Hubbard
model. The integrability of this model is verified by presenting the associated quantumR-matrix
which fulfills the Yang–Baxter equation~YBE!. We show that the model exhibits the SO~4!
symmetry with new representations of theh-pairing SU~2! algebra and thez-pairing spin SU~2!
algebra. Moreover, the algebraic Bethe ansatz is formulated by means of the QISM. Though the
model exhibits the same spectrum as the standard Hubbard model on a periodic lattice, the new
quantumR-matrix, the hidden nesting structure associated with an asymmetric isotropic six-vertex
model and the Bethe eigenvectors do distinguish this model from the standard one.9,10 The essen-
tial differences between the two models manifest in the open lattice versions, which we will
discuss in more depth in the conclusion.

The article is organized as follows. In Sec. II, we introduce a Lax operator associated with the
new Hubbard model and construct a nontrivial higher conserved quantity commuting with the
Hamiltonian. In Sec. III, we present theR-matrix associated with the model by solving the
Yang–Baxter relation. The SO~4! symmetry is verified too. In Sec. IV, we formulate the algebraic
Bethe ansatz solutions for the model with periodic boundary conditions. The eigenvectors and
eigenvalues of the Hamiltonian are presented explicitly. Section V is devoted to a discussion and
conclusion.

II. THE MODEL

Let us begin by introducing a variant of the 1D Hubbard model with the Hamiltonian

H5(
j 51

L

$~s j
1s j 11

2 1s j
2s j 11

1 !1~s→t!%1
U

4 (
j 51

L

s j
zt j 11

z . ~1!

Above s j and t j are the two commuting species of Pauli matrices acting on sitej , andU is a
Coulomb coupling constant. Above and throughout, periodic boundary conditions are imposed on
all summations evaluated over the lattice lengthL. The difference from the standard Hubbard
model is that the model~1! exhibits the off-site Coulomb interaction instead of the on-site one. We
shall see that it not only breaks the spin reflection symmetry but also specifies a new representa-
tion of h-pairing SU~2! algebra and spin SU~2! algebra in order to maintain the SO~4! symmetry.
To verify the integrability of the model, we, at first, identify a relation between the Hamiltonian
~1! and the transfer matrix which is defined by

t~u!5Tr0T~u! ~2!

with

T~u!5L0L~u!¯L01~u!. ~3!

The local Lax operators associated with model~1! have to be alternatively chosen as

3446 J. Math. Phys., Vol. 43, No. 7, July 2002 Guan et al.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:32:48



L0 j~u!5L0 j
s ~u!I 0

2L0 j
t ~u! ~4!

5S eh(u)Pj
1Qj

1 eh(u)Pj
1t j

2 e2h(u)s j
2Qj

1 e2h(u)s j
2t j

2

e2h(u)Pj
1t j

1 e2h(u)Pj
1Qj

2 eh(u)s j
2t j

1 eh(u)s j
2Qj

2

eh(u)s j
1Qj

1 eh(u)s j
1t j

2 e2h(u)Pj
2Qj

1 e2h(u)Pj
2t j

2

e2h(u)s j
1t j

1 e2h(u)s j
1Qj

2 eh(u)Pj
2t j

1 eh(u)Pj
2Qj

2

D , ~5!

where

Pj
65w4~u!6w3~u!sz;

Qj
65w4~u!6w3~u!tz

with a parametrizationg(u)5w4(u)2w3(u)5sin(u); a(u)5w4(u)1w3(u)5cos(u). We would
like to mention that the Lax operators

L0 j
s ~u!5w4~u!1w3~u!s j

zs0
z1s j

1s0
21s0

1s j
2 , ~6!

L0 j
t ~u!5w4~u!1w3~u!t j

zt0
z1t j

1t0
21t0

1tJ
2 , ~7!

I 05cosh
h~u!

2
1s0

zt0
z sinh

h~u!

2
, ~8!

have been chosen the same as that for the Hubbard model.9–11 It follows that the Hamiltonian~1!
is related to the transfer matrix~2! in the following way:

ln t~u!5 ln t~0!1Hu1
1

2!
Ju21¯ , ~9!

above the HamiltonianH5( j 51
L H j ( j 11) with the Hamiltonian density

H j ( j 11)5L0( j 11)~0!L0 j8 ~0!L0 j
21~0!)L0( j 11)

21 ~0!, ~10!

and the second higher conserved current can be given as

J5(
j 51

L

Jj ( j 11)( j 12) ~11!

with

Jj ( j 11)( j 12)5Bj ( j 11)2H j ( j 11)
2 2@H j ( j 11) ,H ( j 11)( j 12)#, ~12!

Bj ( j 11)5L0( j 11)~0!L0 j9 ~0!L0 j
21~0!L0( j 11)

21 ~0!. ~13!

Here the prime denotes the derivative with respect to spectral parameteru. After a straightforward
calculation, the equation~10! does provide us with the expression~1!, whereas the second con-
served quantity~11! has the form
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Jj ( j 11)( j 12)5
U

2
$@2s j

1s j 11
2 1s j

2s j 11
1 #t j 11

z 1@2t j
1t j 11

2 1t j 11
1 t j

2#1s j
z@2s j

1s j 11
2

1s j
2s j 11

1 #t j 12
z 1@2t j 11

1 t j 12
2 1t j 12

1 t j 11
2 #s j

z%1@2s j 12
1 s j

21s j
1s j 12

2 #s j 11
z

1@2t j 12
1 t j

21t j
1t j 12

2 #t j 11
z . ~14!

Here we would like to stress that both the Hamiltonian~1! and the conserved quantity~11! should
be understood as global operators. It is meant that@H,J#50 rather than@H j ( j 11) ,Jj ( j 11)( j 12)#
50. The mutual commutativity ofH andJ convinces us of the existence of a quantumR-matrix
associated with the model~1!. We shall present a rigorous proof of the integrability of the model
in the next section.

III. INTEGRABILITY OF THE MODEL

It has long been clarified that the existence of the quantumR-matrix which fulfills the Yang–
Baxter relation is desirable for constructing integrable quantum chains. This suggests to us a way
to verify the integrability of the model presented above. Indeed, following Ref. 11, we, after a
cumbersome algebraic calculation, can find a class of solutions to the Yang–Baxter relation

R
∨

~u,v !L0 j~u! ^ L0 j~v !5L0 j~v ! ^ L0 j~u!R
∨

~u,v !, ~15!

which is given as

R
∨

~u,v !

5

¨

r1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 r2
2 0 0 r9 0 0 0 0 0 0 0 0 0 0 0

0 0 r2
1 0 0 0 0 0 r9 0 0 0 0 0 0 0

0 0 0 r5 0 0 r6
1 0 0 r6

2 0 0 r8 0 0 0

0 r10 0 0 r2
1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 r4 0 0 0 0 0 0 0 0 0 0

0 0 0 r6
2 0 0 r3 0 0 r7 0 0 r6

1 0 0 0

0 0 0 0 0 0 0 r2
2 0 0 0 0 0 r10 0 0

0 0 r10 0 0 0 0 0 r2
2 0 0 0 0 0 0 0

0 0 0 r6
1 0 0 r7 0 0 r3 0 0 r6

2 0 0 0

0 0 0 0 0 0 0 0 0 0 r4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 r2
1 0 0 r10 0

0 0 0 r8 0 0 r6
2 0 0 r6

1 0 0 r5 0 0 0

0 0 0 0 0 0 0 r9 0 0 0 0 0 r2
1 0 0

0 0 0 0 0 0 0 0 0 0 0 r9 0 0 r2
2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 r1

©
,

~16!
with the Boltzmann weights

r15~cosu cosvel1sinv sinue2 l !r2 ,
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r45~cosu cosve2 l1sinv sinuel !r2 ,

r95~sinu cosve2 l2sinv cosuel !r2 ,

r105~sinu cosvel2sinv cosue2 l !r2 ,

r2
15elr2 , r2

25e2 lr2 ,

r35
~cosu cosvel2sinv sinue2 l !

cos2 u2sin2 v
r2 ,

r55
~cosu cosve2 l2sinv sinuel !

cos2 u2sin2 v
r2 ,

r6
15

~cosu sinue2 l2sinv cosvel !

cos2 u2sin2 v
r2 ,

r6
25

~cosu sinuel2sinv cosve2 l !

cos2 u2sin2 v
r2

and

r85r32r1 ,

r75r52r4 , ~17!

l 5h~u!2h~v !, i
sinh 2h~u!

sin 2u
5

U

2
,

which enjoy the following identities:

r4r11r9r1051,

r1r51r3r452,

r6
1r6

25r3r521.

This R-matrix with more distinct Boltzmann weights is indeed different from the one for the
standard Hubbard model9–11 and a twisted version20 which is associated with the Hubbard model
with chemical potential terms. Running a Maple program we may check that theR-matrix satisfies
the Yang–Baxter equation

R12~u,v !R13~u,w!R23~v,w!5R23~v,w!R13~u,w!R12~u,v !. ~18!

So far we have built up the QISM mechanism for the alternative Hubbard model and concluded
the integrability of the model as well. On the other hand, a fermionic model is always favorable in
the study of the condensed matter physics due to the clear distinction between the fermionic
degrees of freedom and bosonic degrees of freedom. By performing the Jordan–Wigner
transformations,11,21 one may obtain the Hamiltonian of a fermionic model which is equivalent to
the Hubbard model~1!:

H52 (
j 51

N21

(
s

~a( j 11)s
† ajs1ajs

† a( j 11)s!1U(
j 51

N S nj↑2
1

2D S n( j 11)↓2
1

2D . ~19!
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Aboveajs
† andajs are creation and annihilation operators with spins~s5↑ or ↓! at sitej satisfying

the anti-commutation relations

$ajs ,aj 8s8%5$ajs
† ,aj 8s8

† %50, ~20!

$ajs ,aj 8s8
† %5d j j 8dss8 , ~21!

andnjs5ajs
† ajs is the density operator. The integrability of the fermionic model~19! requires that

the graded Lax operator related to the Hamiltonian~19!,

L0 j~u!5S 2eh(u) f j↑ f j↓ 2eh(u) f j↑aj↓ ie2h(u)aj↑gj↓ ie2h(u)aj↑aj↓
2 ie2h(u) f j↑aj↓

† e2h(u) f j↑gj↓ eh(u)aj↑aj↓
† ieh(u)aj↑gj↓

eh(u)aj↑
† f j↓ eh(u)aj↑

† aj↓ e2h(u)gj↑ f j↓ e2h(u)gj↑aj↓
2 ie2h(u)aj↑

† aj↓
† e2h(u)aj↑

† gj↓ ieh(u)gj↑aj↓
† 2eh(u)gj↑gj↓

D , ~22!

must generate the graded Yang–Baxter relation

R
∨

~u,v !L0 j~u! ^ L0 j~v !5L0 j~v ! ^ L0 j~u!R
∨

~u,v !, ~23!

with the gradedR-matrix which is given by

R
∨

~u,v !5WR
∨

~u,v !W21, ~24!

where

W5sz
^ S 1 0 0 0

0 2 i 0 0

0 0 2 i 0

0 0 0 1

D ^ I ~25!

and

f js5sinu2~sinu2 i cosu!njs , gjs5cosu2~cosu1 i sinu!njs , ~26!

with the gradingP(1)5P(4)50, P(2)5P(3)51. The monodromy matrix is defined by

T~u!5L0L~u!¯L01~u!, ~27!

such that the transfer matrices

t~u!5str0T~u! ~28!

commute each other for different values of the parameteru. It can be verified that an expansion of
the logarithm of the transfer matrix~28! in powers ofu will lead to the Hamiltonian~19! as well
as higher conserved quantities.

We would like to remark that the model possesses the SO~4! symmetry if we consider a new
representation of theh-pair SU~2! algebra,

h5(
i 51

L

~21! iai↑a( i 11)↓ , h†5~h!†, hz5
1

2 (
i 51

L

~ni↑1ni↓!2
1

2
L, ~29!

and thez-pair spin SU~2! algebra

3450 J. Math. Phys., Vol. 43, No. 7, July 2002 Guan et al.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:32:48



z5(
i 51

L

ai↑
† a( i 11)↓ , z†5~z!†, zz5

1

2 (
i 51

L

~n( i 11)↓2ni↑!, ~30!

which comprise the SO~4! algebra. Taking into account the globality of these operators, one may
show that the Hamiltonian~19! commutes with the generators of the above two SU~2! algebras.
This symmetry could be expected to complete all eigenstates of the Hubbard model like the case
in the standard Hubbard model. Here theh-pairing raising operator creating a pair of electrons
with opposite spin on different sites could be interpreted as a delocalized Cooper pair.

IV. ALGEBRAIC BETHE ANSATZ

Towards an exact solution of an integrable model, the algebraic Bethe ansatz seems to have
more utility than the coordinate Bethe ansatz because the former not only provides us with the
spectrum of all conserved quantities, but makes a close connection to the finite temperature
properties of the model. There have been a lot of papers devoted to the study of the nested
algebraic Bethe ansatz22 for the multistate integrable models with Lie algebra~or Lie superalge-
bra! symmetry. Following the so-called ABCDF approach to solve the Hubbard-like models,13,23

we shall formulate the algebraic Bethe ansatz for the model in that which follows. To this end, as
usual, we have to perform the ansatz step by step. However, it is not necessary to restate all of the
calculations used in solving our model because of the similarity to the routine proposed in Ref. 13.

In order to carry out the algebraic Bethe ansatz for this Hubbard model, we first need to find
the eigenvalues and eigenvectors of the transfer matrix~28!:

tuFn&5luFn&. ~31!

Following the prescription in Ref. 13, the eigenvectors of the transfer matrix are given by

uFn&5Fn .Fu0&, ~32!

where the components ofF are coefficients of an arbitrary linear combination of vectorsFn and
u0& is the pseudovacuum state, chosen here as the standard ferromagnetic one

u0&5 ^ j 51
N u0& j , ~33!

where

u0& i5S 1
0D

i

^ S 1
0D

i

~34!

which corresponds to the doubly occupied state. We write the monodromy matrixT(u) in ~27! as

T~u!5S B~u! B1~u! B2~u! F~u!

C1~u! A11~u! A12~u! E1~u!

C2~u! A21~u! A22~u! E2~u!

C3~u! C4~u! C5~u! D~u!

D ~35!

such that the necessary commutation relations between the diagonal fields and the creation fields
can be derived from the Yang–Baxter algebra

R12~u,v !T
1

~u!T
2

~v !5T
2

~v !T
1

~u!R12~u,v !. ~36!

In the above,
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R12~u,v !5PR
∨

~u,v !.

Here P is the graded permutation operator. Let us first display an important commutation role,
which reveals to us a hidden nesting structure and the symmetry of eigenvectors,

BW ~u!BW ~v !5
r4~u,v !

r1~u,v !
BW ~v !BW ~u!• r̂ ~u,v !1

i

r8~u,v !r1~u,v !
F~v !B~u!jW1~u,v !

1
i

r8~u,v !
F~u!B~v !jW2~u,v !, ~37!

where

jW1~u,v !5~0,f 1~u,v !, f 2~u,v !,0!; jW2~u,v !5~0,r6
1~u,v !,r6

2~u,v !,0!,

r̂ ~u,v !5S 1 0 0 0

0 a~u,v ! b~u,v ! 0

0 c~u,v ! d~u,v ! 0

0 0 0 1

D , ~38!

with

f 1~u,v !5r6
2~u,v !r8~u,v !2r6

1~u,v !r5~u,v !,

f 2~u,v !5r6
2~u,v !r5~u,v !2r6

1~u,v !r8~u,v !,

a~u,v !5
r3~u,v !r8~u,v !2r6

1~u,v !2

r4~u,v !r8~u,v !
,

d~u,v !5
r3~u,v !r8~u,v !2r6

2~u,v !2

r4~u,v !r8~u,v !
,

b~u,v !5c~u,v !5
r6

1~u,v !r6
2~u,v !2r8~u,v !r7~u,v !

r4~u,v !r8~u,v !
.

It turns out that the auxiliary matrixr̂ (u,v) is nothing but a gauged rationalR-matrix of an
isotropic six-vertex model. If we adopt the parametrization introduced in Ref. 13 or 24, explicitly,

x̃52
sinx

cosx
e22h(x)1

cosx

sinx
e2h(x), x5u,v, ~39!

one may find that

a~u,v !52
Ue2u(u,v)

ũ2 ṽ2U
, d~u,v !52

Ueu(u,v)

ũ2 ṽ2U
,

b~u,v !5c~u,v !5
ũ2 ṽ

ũ2 ṽ2U
,

with
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e2u(u,v)5
cosv sinu

sinvcosu
.

We shall see that ther̂ -matrix ~38! is related to the one of the isotropic six-vertex model via a
proper gauge transformation, which does not change the spectrum of the spin sector. This seems to
provide a new version of theR-matrix, which does not have the difference property, for the
isotropic six-vertex model. In view of the commutation relation~37!, the creation operatorsBW a ,
EW a do not intertwine. So it is reasonable that the eigenvectors of the transfer matrices are gener-
ated only by the creation operatorsBW a(u) andF(u). Following the argument in Ref. 13, we may
find that then-particle vector can be determined recursively by the following relation:

Fn~v1 ,...,vn!5BW ~v1! ^ Fn21~v2 ,...,vn!1(
j 52

n
1

ir8~v1 ,v j !
)
kÞ j

n
r1~vk ,v j !

ir9~vk ,v j !
@jW2~v1 ,v j !

^ F~v1!Fn22~v2 ,...,v j 21 ,v j 11 ,...,vn!B~v j !#)
k52

j 21
r4~vk ,v j !

r1~vk ,v j !
r̂ k,k11~vk ,v j !.

~40!

Explicitly, the two-particle eigenvector reads

F2~v1 ,v2!5BW ~v1! ^ BW ~v2!1jW2~v1 ,v2! ^ F~v1!B~v2!
1

ir8~v1 ,v2!
. ~41!

From the commutation relation~37!, we can conclude thatFn(v1 ,...,vn) satisfies an exchange
symmetry relation

Fn~v1 ,...,v j ,v j 11 ,...,vn!5
r4~v j ,v j 11!

r1~v j ,v j 11!
Fn~v1 ,...,v j 11 ,v j ,...,vn!• r̂ j , j 11~v j ,v j 11! ~42!

based on the following identity:

r4~v j ,v j 11!

r1~v j 11 ,v j !r8~v j 11 ,v j !r1~v j ,v j 11!
jW 1~v j 11 ,v j !• r̂ ~v j ,v j 11!

52
1

r8~v j ,v j 11!
jW 2~v j ,v j 11!. ~43!

In the above expressions,jW plays the role of forbidding two spin up or two spin down electrons at
same site. Also,F(u) creates a local hole pair with opposite spins. In order to manipulate the
eigenvalue of the transfer matrix~28! we need the commutation roles involving the diagonal fields
over the creation fields. After some algebra, from the Yang–Baxter relation~36! we have

B~u!BW a~v !5
r1~v,u!

ir9~v,u!
BW a~v !B~u!2

1

ir9~v,u!
BW a~u!B~v !•ĥ1~v,u!, ~44!

D~u!BW a~v !5
ir10~u,v !

r8~u,v !
BW a~v !D~u!2

1

r8~v,u!
F~v !CW a13* ~u!•ĥ1~u,v !

1
r5~u,v !

r8~u,v !
F~u!CW a13* ~v !1

i

r8~u,v !
jW 2~u,v !•~EW * ~u! ^ Â~v !!, ~45!
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Âab~u!BW a~v !5
ir4~u,v !

r9~u,v !
BW ~v ! ^ Â~u!• r̂ ~u,v !2

i

r9~u,v !
ĥ2~u,v !•BW ~u! ^ Â~v !

1
1

r9~u,v !r8~u,v !
$F~v !CW 32a~u! ^ jW1~u,v !1ĥ2~u,v !•F~u!CW 32a~v !

^ jW2~u,v !%1
1

r8~u,v !
EW * ~u!B~v ! ^ jW2~u,v !. ~46!

Above we introduced the notations

ĥ1~u,v !5S r2
1~u,v ! 0

0 r2
2~u,v !

D ,

ĥ2~u,v !5S r2
2~u,v ! 0

0 r2
1~u,v !D ,

Â~u!5S A11~u! A12~u!

A21~u! A22~u!
D , ~47!

BW 5~B1 ,B2!, CW 5S C1

C2
D ,

CW * 5~C4 ,C5!, EW * 5S E1

E2
D .

In order to determine the eigenvalue of the transfer matrix~28! acting on the mult-particle eigen-
states we need to consider the commutation relations for the creation fieldF(u):

B~u!F~v !52
r1~v,u!

r8~v,u!
F~v !B~u!1

r5~v,u!

r8~v,u!
F~u!B~v !2

i

r8~v,u!
@BW ~u! ^ BW ~v !#•jW2

t ~v,u!,

~48!

D~u!F~v !52
r1~v,u!

r8~v,u!
F~v !D~u!1

r5~v,u!

r8~v,u!
F~u!D~v !1

i

r8~v,u!
jW 2~v,u!•@EW * ~u! ^ EW * ~v !#,

~49!

Â~u!F~v !5F12
r2

1~u,v !r2
2~u,v !

r9~u,v !r10~u,v !
GF~v !Â~u!1

1

r9~u,v !r10~u,v !
ĥ2~u,v !•F~u!Â~v !•ĥ2~u,v !

1
1

ir9~u,v !
ĥ2~u,v !•BW ~u! ^ EW * ~v !2

1

ir10~u,v !
EW * ~u! ^ BW ~v !•ĥ2~u,v !, ~50!

BW ~u!F~v !5
ir9~u,v !

r1~u,v !
F~v !BW ~u!1

1

r1~u,v !
ĥ2~u,v !•BW ~v !F~u!, ~51!

F~u!BW ~v !52
ir10~u,v !

r1~u,v !
BW ~v !F~u!1

1

r1~u,v !
ĥ1~u,v !•F~v !BW ~u!. ~52!

Finally, if we adopt the variablesz6(v i) used in Ref. 13, i.e.,

3454 J. Math. Phys., Vol. 43, No. 7, July 2002 Guan et al.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

05:32:48



z2~v i !5
cosv i

sinv i
e2h(v i ), z1~v i !5

sinv i

cosv i
e2h(v i ), ~53!

and make a shift on the spin rapidityl̃ j5l̃ j1U/2, the eigenvalue of the transfer matrix~28! is
given as~up on a common factor!

t~u!uFn~v1 ,...,vn!&5H @z2~u!#L)
i 51

n
sinu~11z2~v i !/z1~u!!

cosu~12z2~v i !/z2~u!!

1@z1~u!#L)
i 51

n
sinu~11z2~v i !z2~u!!

cosu~12z2~v i !z1~u!!

2)
i 51

n
sinu~11z2~v i !/z1~u!!

cosu~12z2~v i !/z2~u!!
)
l 51

M
~ ũ2l̃ l1U/2!

~ ũ2l̃ l2U/2!

1)
i 51

n
sinu~11z2~v i !z2~u!!

cosu~12z2~v i !z1~u!!
)
l 51

M
~ ũ2l̃ l23U/2!

~ ũ2l̃ l2U/2!
J uFn~v1 ,...,vn!&,

~54!

provided that

@z2~v i !#
L5)

l 51

M
~ ṽ i2l̃ l1U/2!

~ ṽ i2l̃ l2U/2!
, ~55!

)
i 51

n
~ l̃ j2 ṽ i1U/2!

~ l̃ j2 ṽ i2U/2!
52)

l 51,
lÞ j ,

M
~ l̃ j2l̃ l1U !

~ l̃ j2l̃ l2U !
, ~56!

where

j 51,...M , i 51,...,n.

If we express the variablez2(ui) in terms of the~hole! momentaki by z2(ui)5eiki, from the
relation ~39!, the energy is given by

En52~N/22n!U2(
i 51

n

2 coski . ~57!

Using the momentaki instead of the charge rapidityṽ i via the relation~39! and making a scaling
on the spin rapidityl̃ j asl j52( i /2)l̃ j , then the Bethe equations~55! and ~56! read

eiLki5)
l 51

M
~sinki2l l2 iU /4!

~sinki2l l1 iU /4!
,

)
i 51

n
~sinki2l j2 iU /4!

~sinki2l j1 iU /4!
52)

l 51,
lÞ j

M
~l j2l l1 iU /2!

~l j2l l2 iU /2!
, ~58!

j 51,...M , i 51,...,n.
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V. CONCLUSIONS AND DISCUSSION

We have proposed an integrable variant of the Hubbard model with off-site Coulomb inter-
action. The integrability of the model was verified by showing that the quantumR-matrix satisfies
the Yang–Baxter equation. It was argued that the model possess SO~4! symmetry, however, it
contains a new representation ofh-pairing SU~2! algebra andz-pair spin SU~2! algebra. By means
of the nested Bethe ansatz, we have presented the spectrum of the Hamiltonian, eigenvectors and
the Bethe ansatz equations for the model with periodic boundary conditions. We found that the
model exhibits a gaugedr -matrix of the isotropic XXX model, which plays a crucial role in
solving the model. Under periodic boundary conditions the alternative model and the standard
Hubbard model share the same spectrum and Bethe ansatz equations. However, the newR-matrix
we obtained permits different boundary conditions from that for the usual one.25,26 This is meant
that there does not exist simple transformation or gauge transformation between the newR-matrix
and the original one. In turn, the differences in spectrum for the two models would be apparent in
the case of open boundary conditions. We would like to remark that the 1D Hubbard model with
long range Coulomb interaction, i.e.,U( j 51

N (nj↑2 1
2)(n( j 1r )↓2 1

2), r 51,2,..., instead of the on-
site one in the standard Hubbard model would be also integrable. But this type of interaction
would result in nondiagonal boundary scattering matrices which provide competing interaction
terms in the Hamiltonain. This seems to open an opportunity to identify new boundary impurity
effects27–29 in a Luttinger liquid. An interesting problem is to identify the boost operator for the
spectral parameter extension of this new model, which can iteratively generate all of the conserved
currents, using the results of Ref. 14. We shall be focusing on these problems in the near future.
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