212 research outputs found

    Battery cell balance of electric vehicles under fast-DC charging

    Get PDF
    Electric vehicle (EV) range, recharge opportunities and time to recharge are major barriers to mainstream acceptance. Fast-DC charging has the potential to overcome these barriers. This research investigates the impact of fast-DC charging on battery cell balance, charge capacity and range for an EV travelling long distances on an 'electric-highway'. Two commercially available EVs were exposed to a series of discharge and fast-DC charge cycles to measure cell balance and charge capacity. The vehicles' battery management systems (BMS) were capable of successfully balancing individual cells and hence maintaining the batteries' charge capacity. Although fast-DC charge levels and discharge safety margins significantly reduced the vehicles' charge capacity and range as stated by the manufacturer, these values remained stable for the test period. In regards to cell balance and charge capacity, our research suggests that fast-DC charging technology is a feasible option for EVs to travel large distances in a day

    Effect of the anionic counterpart: Molybdate vs. tungstate in energy storage for pseudo-capacitor applications

    Get PDF
    Nickel-based bimetallic oxides (BMOs) have shown significant potential in battery-type electrodes for pseudo-capacitors given their ability to facilitate redox reactions. In this work, two bimetallic oxides, NiMoO4 and NiWO4, were synthesized using a wet chemical route. The structure and electrochemical properties of the pseudo-capacitor cathode materials were characterized. NiMoO4 showed superior charge storage performance in comparison to NiWO4, exhibiting a discharge capacitance of 124 and 77 F·g−1, respectively. NiMoO4, moreover, demonstrates better capacity retention after 1000 cycles with 87.14% compared to 82.22% for NiWO4. The lower electrochemical performance of the latter was identified to result from the redox behavior during cycling. NiWO4 reacts in the alkaline solution and forms a passivation layer composed of WO3 on the electrode, while in contrast, the redox behavior of NiMoO4 is fully reversible

    Feasibility of Conducting a Web-Based Survey of Patient-Reported Outcomes and Rehabilitation Progress

    Get PDF
    Background: Web-based surveys provide an efficient means to track clinical outcomes over time without the use of clinician time for additional paperwork. Our purpose was to determine the feasibility of utilizing web-based surveys to capture rehabilitation compliance and clinical outcomes among postoperative orthopedic patients. The study hypotheses were that (a) recruitment rate would be high (\u3e 90%), (b) patients receiving surveys every two weeks would demonstrate higher response rates than patients that receive surveys every four weeks, and (c) response rates would decrease over time. Methods: The study design involved a longitudinal cohort. Surgical knee patients were recruited for study participation during their first post-operative visit (n = 59, 34.9 ± 12.0 years of age). Patients with Internet access, an available email address and willingness to participate were counter-balanced into groups to receive surveys either every two or four weeks for 24 weeks post-surgery. The surveys included questions related to rehabilitation and questions from standard patient-reported outcome measures. Outcome measures included recruitment rate (participants consented/patients approached), eligibility (participants with email/participants consented), willingness (willing participants/participants eligible), and response rate (percentage of surveys completed by willing participants). Results: Fifty-nine patients were approached regarding participation. Recruitment rate was 98% (n = 58). Eligibility was 95% (n = 55), and willingness was 91% (n = 50). The average response rate was 42% across both groups. There was no difference in the median response rates between the two-week (50%, range 0–100%) and four-week groups (33%, range 0–100%; p = 0.55). Conclusions: Although patients report being willing and able to participate in a web-based survey, response rates failed to exceed 50% in both the two-week and four-week groups. Furthermore, response rates began to decrease after the first three months postoperatively. Therefore, supplementary data collection procedures may be necessary to meet established research quality standards

    The variability and reproducibility of whole genome sequencing technology for detecting resistance to anti-tuberculous drugs

    Get PDF
    Background: The emergence of resistance to anti-tuberculosis drugs is a serious and growing threat to public health. Next-generation sequencing is rapidly gaining traction as a diagnostic tool for investigating drug resistance in Mycobacterium tuberculosis to aid treatment decisions. However, there are few little data regarding the precision of such sequencing for assigning resistance profiles. Methods: We investigated two sequencing platforms (Illumina MiSeq, Ion Torrent PGM™) and two rapid analytic pipelines (TBProfiler, Mykrobe predictor) using a well characterised reference strain (H37Rv) and clinical isolates from patients with tuberculosis resistant to up to 13 drugs. Results were compared to phenotypic drug susceptibility testing. To assess analytical robustness individual DNA samples were subjected to repeated sequencing. Results: The MiSeq and Ion PGM systems accurately predicted drug-resistance profiles and there was high reproducibility between biological and technical sample replicates. Estimated variant error rates were low (MiSeq 1 per 77 kbp, Ion PGM 1 per 41 kbp) and genomic coverage high (MiSeq 51-fold, Ion PGM 53-fold). MiSeq provided superior coverage in GC-rich regions, which translated into incremental detection of putative genotypic drug-specific resistance, including for resistance to para-aminosalicylic acid and pyrazinamide. The TBProfiler bioinformatics pipeline was concordant with reported phenotypic susceptibility for all drugs tested except pyrazinamide and para-aminosalicylic acid, with an overall concordance of 95.3%. When using the Mykrobe predictor concordance with phenotypic testing was 73.6%. Conclusions: We have demonstrated high comparative reproducibility of two sequencing platforms, and high predictive ability of the TBProfiler mutation library and analytical pipeline, when profiling resistance to first- and second-line anti-tuberculosis drugs. However, platform-specific variability in coverage of some genome regions may have implications for predicting resistance to specific drugs. These findings may have implications for future clinical practice and thus deserve further scrutiny, set within larger studies and using updated mutation libraries

    The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020

    Get PDF
    Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology

    Performance evaluation of a new 30 μm thick GaAs x-ray detector grown by MBE

    Get PDF
    A circular mesa (400 μm diameter) GaAs p+-i-n+ photodiode with a 30 μm thick i layer was characterized for its performance as a detector in photon counting x-ray spectroscopy at 20 °C. The detector was fabricated from material grown by molecular beam epitaxy (MBE). An earlier MBE-grown detector fabricated using a different fabrication process and material from a different area of the same epiwafer was shown to suffer from: relatively high leakage current at high temperatures; a high effective carrier concentration that limited its depletion layer width; and material imperfections (butterfly defects) [Lioliou et al 2019 Nucl. Instrum. Methods Phys. Res. A 946 162670]. However, the new detector has better performance (lower leakage current and effective carrier concentration within the i layer). Using the new detector and low noise readout electronics, an energy resolution of 750 eV ± 20 eV Full Width at Half Maximum (FWHM) at 5.9 keV was achieved at 20 °C, equal to that reported for high quality GaAs detectors made from high quality material grown by metalorganic vapour phase epitaxy [Lioliou et al 2017 J. Appl. Phys. 122 244506]. The results highlight the substantially different performances of detectors made from the same epiwafer when the wafer qualities are not uniform and the effects of different fabrication processes

    Polymer self-assembly induced enhancement of ice recrystallization inhibition

    Get PDF
    Ice binding proteins modulate ice nucleation/growth and have huge (bio)technological potential. There are few synthetic materials that reproduce their function, and rational design is challenging due to the outstanding questions about the mechanisms of ice binding, including whether ice binding is essential to reproduce all their macroscopic properties. Here we report that nanoparticles obtained by polymerization-induced self-assembly (PISA) inhibit ice recrystallization (IRI) despite their constituent polymers having no apparent activity. Poly(ethylene glycol), poly(dimethylacrylamide), and poly(vinylpyrrolidone) coronas were all IRI-active when assembled into nanoparticles. Different core-forming blocks were also screened, revealing the core chemistry had no effect. These observations show ice binding domains are not essential for macroscopic IRI activity and suggest that the size, and crowding, of polymers may increase the IRI activity of “non-active” polymers. It was also discovered that poly(vinylpyrrolidone) particles had ice crystal shaping activity, indicating this polymer can engage ice crystal surfaces, even though on its own it does not show any appreciable ice recrystallization inhibition. Larger (vesicle) nanoparticles are shown to have higher ice recrystallization inhibition activity compared to smaller (sphere) particles, whereas ice nucleation activity was not found for any material. This shows that assembly into larger structures can increase IRI activity and that increasing the “size” of an IRI does not always lead to ice nucleation. This nanoparticle approach offers a platform toward ice-controlling soft materials and insight into how IRI activity scales with molecular size of additives
    corecore