326 research outputs found

    Quantum computing with an electron spin ensemble

    Get PDF
    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper Pair Box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations.Comment: Several small corrections and modifications. This version is identical to the version published in Phys. Rev. Let

    GRAPE: GRaphical Abstracted Protein Explorer

    Get PDF
    The region surrounding a protein, known as the surface of interaction or molecular surface, can provide valuable insight into its function. Unfortunately, due to the complexity of both their geometry and their surface fields, study of these surfaces can be slow and difficult and important features may be hard to identify. Here, we describe our GRaphical Abstracted Protein Explorer, or GRAPE, a web server that allows users to explore abstracted representations of proteins. These abstracted surfaces effectively reduce the level of detail of the surface of a macromolecule, using a specialized algorithm that removes small bumps and pockets, while preserving large-scale structural features. Scalar fields, such as electrostatic potential and hydropathy, are smoothed to further reduce visual complexity. This entirely new way of looking at proteins complements more traditional views of the molecular surface. GRAPE includes a thin 3D viewer that allows users to quickly flip back and forth between both views. Abstracted views provide a fast way to assess both a molecule's shape and its different surface field distributions. GRAPE is freely available at http://grape.uwbacter.org

    Electrostatics of surface-electrode ion traps

    Full text link
    Surface-electrode (SE) rf traps are a promising approach to manufacturing complex ion-trap networks suitable for large-scale quantum information processing. In this paper we present analytical methods for modeling SE traps in the gapless plane approximation, and apply these methods to two particular classes of SE traps. For the SE ring trap we derive analytical expressions for the trap geometry and strength, and also calculate the depth in the absence of control fields. For translationally symmetric multipole configurations (analogs of the linear Paul trap), we derive analytical expressions for electrode geometry and strength. Further, we provide arbitrarily good approximations of the trap depth in the absence of static fields and identify the requirements for obtaining maximal depth. Lastly, we show that the depth of SE multipoles can be greatly influenced by control fields.Comment: Published version. Sec. III significantly changed. Some minor edits throughou

    Electrosynthesis of Aryliminophosphoranes in Continuous Flow

    Get PDF
    A practical electrochemical method for synthesizing aryliminophosphoranes from widely available nitro(hetero)arenes in a continuous-flow system is presented. The utilization of flow technology offers several advantages to our approach, including the elimination of the need for a supporting electrolyte and enhanced scalability. Our method demonstrates good tolerance towards various functional groups, with electron-deficient nitroarenes being particularly suitable for this strategy. In addition, we have demonstrated the versatility of aryliminophosphoranes as intermediates in synthesizing anilines, amines, and amides. To further enhance the utility of our approach, we have developed a telescoped method that utilizes a tube-in-tube setup for the in-situ production of isocyanates

    A microfabricated surface-electrode ion trap for scalable quantum information processing

    Full text link
    We demonstrate confinement of individual atomic ions in a radio-frequency Paul trap with a novel geometry where the electrodes are located in a single plane and the ions confined above this plane. This device is realized with a relatively simple fabrication procedure and has important implications for quantum state manipulation and quantum information processing using large numbers of ions. We confine laser-cooled Mg-24 ions approximately 40 micrometer above planar gold electrodes. We measure the ions' motional frequencies and compare them to simulations. From measurements of the escape time of ions from the trap, we also determine a heating rate of approximately five motional quanta per millisecond for a trap frequency of 5.3 MHz.Comment: 4 pages, 4 figure

    Background-free detection of trapped ions

    Full text link
    We demonstrate a Doppler cooling and detection scheme for ions with low-lying D levels which almost entirely suppresses scattered laser light background, while retaining a high fluorescence signal and efficient cooling. We cool a single ion with a laser on the 2S1/2 to 2P1/2 transition as usual, but repump via the 2P3/2 level. By filtering out light on the cooling transition and detecting only the fluorescence from the 2P_3/2 to 2S1/2 decays, we suppress the scattered laser light background count rate to 1 per second while maintaining a signal of 29000 per second with moderate saturation of the cooling transition. This scheme will be particularly useful for experiments where ions are trapped in close proximity to surfaces, such as the trap electrodes in microfabricated ion traps, which leads to high background scatter from the cooling beam

    Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap

    Full text link
    We characterise the performance of a surface-electrode ion "chip" trap fabricated using established semiconductor integrated circuit and micro-electro-mechanical-system (MEMS) microfabrication processes which are in principle scalable to much larger ion trap arrays, as proposed for implementing ion trap quantum information processing. We measure rf ion micromotion parallel and perpendicular to the plane of the trap electrodes, and find that on-package capacitors reduce this to <~ 10 nm in amplitude. We also measure ion trapping lifetime, charging effects due to laser light incident on the trap electrodes, and the heating rate for a single trapped ion. The performance of this trap is found to be comparable with others of the same size scale.Comment: 6 pages, 10 figure

    Long-term inpatient disease burden in the Adult Life after Childhood Cancer in Scandinavia (ALiCCS) study : A cohort study of 21,297 childhood cancer survivors

    Get PDF
    Background Survivors of childhood cancer are at increased risk for a wide range of late effects. However, no large population-based studies have included the whole range of somatic diagnoses including subgroup diagnoses and all main types of childhood cancers. Therefore, we aimed to provide the most detailed overview of the long-term risk of hospitalisation in survivors of childhood cancer. Methods and findings From the national cancer registers of Denmark, Finland, Iceland, and Sweden, we identified 21,297 5-year survivors of childhood cancer diagnosed with cancer before the age of 20 years in the periods 1943-2008 in Denmark, 1971-2008 in Finland, 1955-2008 in Iceland, and 1958-2008 in Sweden. We randomly selected 152,231 population comparison individuals matched by age, sex, year, and country (or municipality in Sweden) from the national population registers. Using a cohort design, study participants were followed in the national hospital registers in Denmark, 1977-2010; Finland, 1975-2012; Iceland, 1999-2008; and Sweden, 1968-2009. Disease-specific hospitalisation rates in survivors and comparison individuals were used to calculate survivors' standardised hospitalisation rate ratios (RRs), absolute excess risks (AERs), and standardised bed day ratios (SBDRs) based on length of stay in hospital. We adjusted for sex, age, and year by indirect standardisation. During 336,554 person-years of follow-up (mean: 16 years; range: 0-42 years), childhood cancer survivors experienced 21,325 first hospitalisations for diseases in one or more of 120 disease categories (cancer recurrence not included), when 10,999 were expected, yielding an overall RR of 1.94 (95% confidence interval [95% CI] 1.91-1.97). The AER was 3,068 (2,980-3,156) per 100,000 person-years, meaning that for each additional year of follow-up, an average of 3 of 100 survivors were hospitalised for a new excess disease beyond the background rates. Approximately 50% of the excess hospitalisations were for diseases of the nervous system (19.1% of all excess hospitalisations), endocrine system (11.1%), digestive organs (10.5%), and respiratory system (10.0%). Survivors of all types of childhood cancer were at increased, persistent risk for subsequent hospitalisation, the highest risks being those of survivors of neuroblastoma (RR: 2.6 [2.4-2.8]; n = 876), hepatic tumours (RR: 2.5 [2.0-3.1]; n = 92), central nervous system tumours (RR: 2.4 [2.3-2.5]; n = 6,175), and Hodgkin lymphoma (RR: 2.4 [2.3-2.5]; n = 2,027). Survivors spent on average five times as many days in hospital as comparison individuals (SBDR: 4.96 [4.94-4.98]; n = 422,218). The analyses of bed days in hospital included new primary cancers and recurrences. Of the total 422,218 days survivors spent in hospital, 47% (197,596 bed days) were for new primary cancers and recurrences. Our study is likely to underestimate the absolute overall disease burden experienced by survivors, as less severe late effects are missed if they are treated sufficiently in the outpatient setting or in the primary health care system. Conclusions Childhood cancer survivors were at increased long-term risk for diseases requiring inpatient treatment even decades after their initial cancer. Health care providers who do not work in the area of late effects, especially those in primary health care, should be aware of this highly challenged group of patients in order to avoid or postpone hospitalisations by prevention, early detection, and appropriate treatments.Peer reviewe

    Optimum electrode configurations for fast ion separation in microfabricated surface ion traps

    Full text link
    For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recombination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher secular frequencies during the transportation processes can be achieved by optimising trap geometries. We show how two different arrangements of segmented static potential electrodes in surface ion traps can be optimised for fast ion separation or recombination processes. We also solve the equations of motion for the ion dynamics during the separation process and illustrate important considerations that need to be taken into account to make the process adiabatic

    Fabrication and heating rate study of microscopic surface electrode ion traps

    Get PDF
    We report heating rate measurements in a microfabricated gold-on-sapphire surface electrode ion trap with trapping height of approximately 240 micron. Using the Doppler recooling method, we characterize the trap heating rates over an extended region of the trap. The noise spectral density of the trap falls in the range of noise spectra reported in ion traps at room temperature. We find that during the first months of operation the heating rates increase by approximately one order of magnitude. The increase in heating rates is largest in the ion loading region of the trap, providing a strong hint that surface contamination plays a major role for excessive heating rates. We discuss data found in the literature and possible relation of anomalous heating to sources of noise and dissipation in other systems, namely impurity atoms adsorbed on metal surfaces and amorphous dielectrics.Comment: 17 pages, 5 figure
    corecore