36 research outputs found

    Carbon management planning in UK universities: a journey to low carbon built environment

    Get PDF
    Climate change and increase in carbon emissions are one of the biggest challenges for the modern world. Organisations are facing increasing pressure from governments and stakeholders to reduce carbon emissions. The Higher Education (HE) sector has a huge environmental, social and economic impact. In 2012-13, Higher Education Institutions (HEIs) consumed 7.9 billion kWh of energy and emitted 2.3 million tonnes of carbon emissions, which strengthens the role of universities in implementing carbon management for a low carbon built environment. The HE sector is not exempt from implementing carbon management strategies and responded to the UK government’s Climate Change Act by developing its own targets in England, which are in line with the national targets – 80% reduction by 2050 and 34% by 2020 from the 1990 baseline. This indicates the scale of the challenge to implement carbon management through effective planning procedures. The aim of this paper is to explore the key elements of the carbon management planning process in UK universities and identify potential areas of improvements. This exploratory study adopted a qualitative and inductive research approach. The data were collected through the content analysis of eighteen universities' carbon management plans (CMPs). The study found that key elements of carbon management planning are; senior management leadership, carbon footprinting, carbon reduction targets, stakeholder engagement, funding and resources, governance and evaluation and reporting. Universities have shown policy commitment and developed CMPs for implementation, but the performance of universities varies significantly. There is also a disconnect between planning and delivery. Findings of this research show that CMPs can be valuable tools to assist universities in their carbon management journey. However, weaknesses are identified in the current design of CMPs, for example, overly focusing on the technical issues of carbon management (to the detriment of socio-technical factors), unsupportive of stakeholder engagement, not aligned with core policies and strategies and being static documents. CMPs are not comprehensive with regards to the operational boundary of carbon emissions and need standard approach for measuring, targeting and reporting. This study will be useful to academics and practitioners aiming to improve carbon management planning in universities and other organisations

    High-Resolution Analysis of Parent-of-Origin Allelic Expression in the Arabidopsis Endosperm

    Get PDF
    Genomic imprinting is an epigenetic phenomenon leading to parent-of-origin specific differential expression of maternally and paternally inherited alleles. In plants, genomic imprinting has mainly been observed in the endosperm, an ephemeral triploid tissue derived after fertilization of the diploid central cell with a haploid sperm cell. In an effort to identify novel imprinted genes in Arabidopsis thaliana, we generated deep sequencing RNA profiles of F1 hybrid seeds derived after reciprocal crosses of Arabidopsis Col-0 and Bur-0 accessions. Using polymorphic sites to quantify allele-specific expression levels, we could identify more than 60 genes with potential parent-of-origin specific expression. By analyzing the distribution of DNA methylation and epigenetic marks established by Polycomb group (PcG) proteins using publicly available datasets, we suggest that for maternally expressed genes (MEGs) repression of the paternally inherited alleles largely depends on DNA methylation or PcG-mediated repression, whereas repression of the maternal alleles of paternally expressed genes (PEGs) predominantly depends on PcG proteins. While maternal alleles of MEGs are also targeted by PcG proteins, such targeting does not cause complete repression. Candidate MEGs and PEGs are enriched for cis-proximal transposons, suggesting that transposons might be a driving force for the evolution of imprinted genes in Arabidopsis. In addition, we find that MEGs and PEGs are significantly faster evolving when compared to other genes in the genome. In contrast to the predominant location of mammalian imprinted genes in clusters, cluster formation was only detected for few MEGs and PEGs, suggesting that clustering is not a major requirement for imprinted gene regulation in Arabidopsis

    H3K27me3 Profiling of the Endosperm Implies Exclusion of Polycomb Group Protein Targeting by DNA Methylation

    Get PDF
    Polycomb group (PcG) proteins act as evolutionary conserved epigenetic mediators of cell identity because they repress transcriptional programs that are not required at particular developmental stages. Each tissue is likely to have a specific epigenetic profile, which acts as a blueprint for its developmental fate. A hallmark for Polycomb Repressive Complex 2 (PRC2) activity is trimethylated lysine 27 on histone H3 (H3K27me3). In plants, there are distinct PRC2 complexes for vegetative and reproductive development, and it was unknown so far whether these complexes have target gene specificity. The FERTILIZATION INDEPENDENT SEED (FIS) PRC2 complex is specifically expressed in the endosperm and is required for its development; loss of FIS function causes endosperm hyperproliferation and seed abortion. The endosperm nourishes the embryo, similar to the physiological function of the placenta in mammals. We established the endosperm H3K27me3 profile and identified specific target genes of the FIS complex with functional roles in endosperm cellularization and chromatin architecture, implicating that distinct PRC2 complexes have a subset of specific target genes. Importantly, our study revealed that selected transposable elements and protein coding genes are specifically targeted by the FIS PcG complex in the endosperm, whereas these elements and genes are densely marked by DNA methylation in vegetative tissues, suggesting that DNA methylation prevents targeting by PcG proteins in vegetative tissues

    Genomic Analysis of Parent-of-Origin Allelic Expression in Arabidopsis thaliana Seeds

    Get PDF
    Differential expression of maternally and paternally inherited alleles of a gene is referred to as gene imprinting, a form of epigenetic gene regulation common to flowering plants and mammals. In plants, imprinting primarily occurs in the endosperm, a seed tissue that supports the embryo during its growth and development. Previously, we demonstrated that widespread DNA demethylation at remnants of transposable elements accompanies endosperm development and that a subset of these methylation changes are associated with gene imprinting. Here we assay imprinted gene expression genome-wide by performing high-throughput sequencing of RNA derived from seeds of reciprocal intraspecific crosses. We identify more than 200 loci that exhibit parent-of-origin effects on gene expression in the endosperm, including a large number of transcription factors, hormone biosynthesis and response genes, and genes that encode regulators of epigenetic information, such as methylcytosine binding proteins, histone methyltransferases, and chromatin remodelers. The majority of these genes are partially, rather than completely, imprinted, suggesting that gene dosage regulation is an important aspect of imprinted gene expression

    Dynamic Regulation of H3K27 Trimethylation during Arabidopsis Differentiation

    Get PDF
    During growth of multicellular organisms, identities of stem cells and differentiated cells need to be maintained. Cell fate is epigenetically controlled by the conserved Polycomb-group (Pc-G) proteins that repress their target genes by catalyzing histone H3 lysine 27 trimethylation (H3K27me3). Although H3K27me3 is associated with mitotically stable gene repression, a large fraction of H3K27me3 target genes are tissue-specifically activated during differentiation processes. However, in plants it is currently unclear whether H3K27me3 is already present in undifferentiated cells and dynamically regulated to permit tissue-specific gene repression or activation. We used whole-genome tiling arrays to identify the H3K27me3 target genes in undifferentiated cells of the shoot apical meristem and in differentiated leaf cells. Hundreds of genes gain or lose H3K27me3 upon differentiation, demonstrating dynamic regulation of an epigenetic modification in plants. H3K27me3 is correlated with gene repression, and its release preferentially results in tissue-specific gene activation, both during differentiation and in Pc-G mutants. We further reveal meristem- and leaf-specific targeting of individual gene families including known but also likely novel regulators of differentiation and stem cell regulation. Interestingly, H3K27me3 directly represses only specific transcription factor families, but indirectly activates others through H3K27me3-mediated silencing of microRNA genes. Furthermore, H3K27me3 targeting of genes involved in biosynthesis, transport, perception, and signal transduction of the phytohormone auxin demonstrates control of an entire signaling pathway. Based on these and previous analyses, we propose that H3K27me3 is one of the major determinants of tissue-specific expression patterns in plants, which restricts expression of its direct targets and promotes gene expression indirectly by repressing miRNA genes

    EMF1 and PRC2 Cooperate to Repress Key Regulators of Arabidopsis Development

    Get PDF
    EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene crucial to Arabidopsis vegetative development. Loss of function mutants in the EMF1 gene mimic the phenotype caused by mutations in Polycomb Group protein (PcG) genes, which encode epigenetic repressors that regulate many aspects of eukaryotic development. In Arabidopsis, Polycomb Repressor Complex 2 (PRC2), made of PcG proteins, catalyzes trimethylation of lysine 27 on histone H3 (H3K27me3) and PRC1-like proteins catalyze H2AK119 ubiquitination. Despite functional similarity to PcG proteins, EMF1 lacks sequence homology with known PcG proteins; thus, its role in the PcG mechanism is unclear. To study the EMF1 functions and its mechanism of action, we performed genome-wide mapping of EMF1 binding and H3K27me3 modification sites in Arabidopsis seedlings. The EMF1 binding pattern is similar to that of H3K27me3 modification on the chromosomal and genic level. ChIPOTLe peak finding and clustering analyses both show that the highly trimethylated genes also have high enrichment levels of EMF1 binding, termed EMF1_K27 genes. EMF1 interacts with regulatory genes, which are silenced to allow vegetative growth, and with genes specifying cell fates during growth and differentiation. H3K27me3 marks not only these genes but also some genes that are involved in endosperm development and maternal effects. Transcriptome analysis, coupled with the H3K27me3 pattern, of EMF1_K27 genes in emf1 and PRC2 mutants showed that EMF1 represses gene activities via diverse mechanisms and plays a novel role in the PcG mechanism

    Kicking against the PRCs - a domesticated transposase antagonises silencing mediated by polycomb group proteins and is an accessory component of polycomb repressive complex 2

    Get PDF
    The Polycomb group (PcG) and trithorax group (trxG) genes play crucial roles in development by regulating expression of homeotic and other genes controlling cell fate. Both groups catalyse modifications of chromatin, particularly histone methylation, leading to epigenetic changes that affect gene activity. The trxG antagonizes the function of PcG genes by activating PcG target genes, and consequently trxG mutants suppress PcG mutant phenotypes. We previously identified the ANTAGONIST OF LIKE HETEROCHROMATIN PROTEIN1 (ALP1) gene as a genetic suppressor of mutants in the Arabidopsis PcG gene LIKE HETEROCHROMATIN PROTEIN1 (LHP1). Here, we show that ALP1 interacts genetically with several other PcG and trxG components and that it antagonizes PcG silencing. Transcriptional profiling reveals that when PcG activity is compromised numerous target genes are hyper-activated in seedlings and that in most cases this requires ALP1. Furthermore, when PcG activity is present ALP1 is needed for full activation of several floral homeotic genes that are repressed by the PcG. Strikingly, ALP1 does not encode a known chromatin protein but rather a protein related to PIF/Harbinger class transposases. Phylogenetic analysis indicates that ALP1 is broadly conserved in land plants and likely lost transposase activity and acquired a novel function during angiosperm evolution. Consistent with this, immunoprecipitation and mass spectrometry (IP-MS) show that ALP1 associates, in vivo, with core components of POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), a widely conserved PcG protein complex which functions as a H3K27me3 histone methyltransferase. Furthermore, in reciprocal pulldowns using the histone methyltransferase CURLY LEAF (CLF), we identify not only ALP1 and the core PRC2 components but also plant-specific accessory components including EMBRYONIC FLOWER 1 (EMF1), a transcriptional repressor previously associated with PRC1-like complexes. Taken together our data suggest that ALP1 inhibits PcG silencing by blocking the interaction of the core PRC2 with accessory components that promote its HMTase activity or its role in inhibiting transcription. ALP1 is the first example of a domesticated transposase acquiring a novel function as a PcG component. The antagonistic interaction of a modified transposase with the PcG machinery is novel and may have arisen as a means for the cognate transposon to evade host surveillance or for the host to exploit features of the transposition machinery beneficial for epigenetic regulation of gene activity.Fil: Liang, Shih Chieh. University of Edinburgh; Reino UnidoFil: Hartwig, Ben. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Perera, Pumi. University of Edinburgh; Reino UnidoFil: Mora Garcia, Santiago. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: de Leau, Erica. University of Edinburgh; Reino UnidoFil: Thornton, Harry. University of Edinburgh; Reino UnidoFil: Lima de Alves, Flavia. University of Edinburgh; Reino UnidoFil: Rapsilber, Juri. University of Edinburgh; Reino UnidoFil: Yang, Suxin. University of Edinburgh; Reino UnidoFil: James, Geo Velikkakam. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Schneeberger, Korbinian. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Finnegan, E. Jean. University of Edinburgh; Reino UnidoFil: Turck, Franziska. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Goodrich, Justin. Mc Gill University; Canad
    corecore