1,337 research outputs found

    Enhancement of Entanglement Percolation in Quantum Networks via Lattice Transformations

    Full text link
    We study strategies for establishing long-distance entanglement in quantum networks. Specifically, we consider networks consisting of regular lattices of nodes, in which the nearest neighbors share a pure, but non-maximally entangled pair of qubits. We look for strategies that use local operations and classical communication. We compare the classical entanglement percolation protocol, in which every network connection is converted with a certain probability to a singlet, with protocols in which classical entanglement percolation is preceded by measurements designed to transform the lattice structure in a way that enhances entanglement percolation. We analyze five examples of such comparisons between protocols and point out certain rules and regularities in their performance as a function of degree of entanglement and choice of operations.Comment: 12 pages, 17 figures, revtex4. changes from v3: minor stylistic changes for journal reviewer, minor changes to figures for journal edito

    Primary gas thermometry by means of laser-absorption spectroscopy: Determination of the Boltzmann constant

    Full text link
    We report on a new optical implementation of primary gas thermometry based on laser absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν1+2ν210+ν3\nu_{1} + 2 \nu_{2}^{\phantom{1}0} + \nu_{3} transition in CO2_{2} gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of 1.6×104\sim1.6\times10^{-4}.Comment: Submitted to Physical Review Letter

    Stratonovich-to-Ito transition in noisy systems with multiplicative feedback

    Get PDF
    Cataloged from PDF version of article.Intrinsically noisy mechanisms drive most physical, biological and economic phenomena. Frequently, the system's state influences the driving noise intensity (multiplicative feedback). These phenomena are often modelled using stochastic differential equations, which can be interpreted according to various conventions (for example, Ito calculus and Stratonovich calculus), leading to qualitatively different solutions. Thus, a stochastic differential equation-convention pair must be determined from the available experimental data before being able to predict the system's behaviour under new conditions. Here we experimentally demonstrate that the convention for a given system may vary with the operational conditions: we show that a noisy electric circuit shifts from obeying Stratonovich calculus to obeying Ito calculus. We track such a transition to the underlying dynamics of the system and, in particular, to the ratio between the driving noise correlation time and the feedback delay time. We discuss possible implications of our conclusions, supported by numerics, for biology and economics

    Ursinus College Bulletin Vol. 10, No. 8, May 1894

    Get PDF
    A digitized copy of the May 1894 Ursinus College Bulletin.https://digitalcommons.ursinus.edu/ucbulletin/1095/thumbnail.jp

    Effective drifts in dynamical systems with multiplicative noise: A review of recent progress

    Get PDF
    Noisy dynamical models are employed to describe a wide range of phenomena. Since exact modeling of these phenomena requires access to their microscopic dynamics, whose time scales are typically much shorter than the observable time scales, there is often need to resort to effective mathematical models such as stochastic differential equations (SDEs). In particular, here we consider effective SDEs describing the behavior of systems in the limits when natural time scales become very small. In the presence of multiplicative noise (i.e. noise whose intensity depends upon the system's state), an additional drift term, called noise-induced drift or effective drift, appears. The nature of this noise-induced drift has been recently the subject of a growing number of theoretical and experimental studies. Here, we provide an extensive review of the state of the art in this field. After an introduction, we discuss a minimal model of how multiplicative noise affects the evolution of a system. Next, we consider several case studies with a focus on recent experiments: the Brownian motion of a microscopic particle in thermal equilibrium with a heat bath in the presence of a diffusion gradient; the limiting behavior of a system driven by a colored noise modulated by a multiplicative feedback; and the behavior of an autonomous agent subject to sensorial delay in a noisy environment. This allows us to present the experimental results, as well as mathematical methods and numerical techniques, that can be employed to study a wide range of systems. At the end we give an application-oriented overview of future projects involving noise-induced drifts, including both theory and experiment. © 2016 IOP Publishing Ltd

    Accuracy of one-dimensional collision integral in the rigid spheres approximation

    Get PDF
    The accuracy of calculation of spectral line shapes in one-dimensional approximation is studied analytically in several limiting cases for arbitrary collision kernel and numerically in the rigid spheres model. It is shown that the deviation of the line profile is maximal in the center of the line in case of large perturber mass and intermediate values of collision frequency. For moderate masses of buffer molecules the error of one-dimensional approximation is found not to exceed 5%.Comment: LaTeX, 24 pages, 8 figure

    Thermophoresis of Brownian particles driven by coloured noise

    Get PDF
    The Brownian motion of microscopic particles is driven by the collisions with the molecules of the surrounding fluid. The noise associated with these collisions is not white, but coloured due, e.g., to the presence of hydrodynamic memory. The noise characteristic time scale is typically of the same order as the time over which the particle's kinetic energy is lost due to friction (inertial time scale). We demonstrate theoretically that, in the presence of a temperature gradient, the interplay between these two characteristic time scales can have measurable consequences on the particle long-time behaviour. Using homogenization theory, we analyse the infinitesimal generator of the stochastic differential equation describing the system in the limit where the two characteristic times are taken to zero; from this generator, we derive the thermophoretic transport coefficient, which, we find, can vary in both magnitude and sign, as observed in experiments. Furthermore, studying the long-term stationary particle distribution, we show that particles can accumulate towards the colder (positive thermophoresis) or the warmer (negative thermophoresis) regions depending on the dependence of their physical parameters and, in particular, their mobility on the temperature.Comment: 9 pages, 4 figure

    Disorder-Induced Order in Quantum XY Chains

    Full text link
    We observe signatures of disorder-induced order in 1D XY spin chains with an external, site-dependent uni-axial random field within the XY plane. We numerically investigate signatures of a quantum phase transition at T=0, in particular an upsurge of the magnetization in the direction orthogonal to the external magnetic field, and the scaling of the block-entropy with the amplitude of this field. Also, we discuss possible realizations of this effect in ultra-cold atom experiments

    Imaging and photogrammetry models of Olduvai Gorge (Tanzania) by Unmanned Aerial Vehicles: A high-resolution digital database for research and conservation of Early Stone Age sites

    Get PDF
    This paper presents the first aerial mapping of Olduvai Gorge (Tanzania) using Unmanned Aerial Vehicles and photogrammetric techniques, to provide a detailed digital cartographic basis for this world-renowned paleoanthropological site. The survey covered an area of 32 km2 of Olduvai Gorge, and through the use of aerial photos and ground control points from Global Navigation Satellite Systems, an orthomosaic and Digital Surface Model, with a higher than 5 cm/pixel ground resolution, were produced. The Digital Surface Model was then denoised to calculate a Digital Elevation Model, and a high-resolution imaging model of Olduvai Gorge was generated. A preliminary morphometric characterization using Geographic Information Systems shows the potential of this approach when analysing multiple topographic variables in large areas of paleoanthropological relevance, including production of a new map template for Olduvai Gorge and new data for the investigation of sedimentary and tectonic processes. These results constitute one of the first attempts to obtain high quality imagery from large geographic areas amenable to Early Stone Age research, and introduce new workflows for the creation of Digital Elevation Models. Overall, the digital dataset produced is intended to support archaeological and geological investigation in this area, and provide new monitoring tools for the conservation of cultural heritage
    corecore