213 research outputs found

    The influence of maternal and infant nutrition on cardiometabolic traits: novel findings and future research directions from four Canadian birth cohort studies

    Get PDF
    A mother's nutritional choices while pregnant may have a great influence on her baby's development in the womb and during infancy. There is evidence that what a mother eats during pregnancy interacts with her genes to affect her child's susceptibility to poor health outcomes including childhood obesity, pre-diabetes, allergy and asthma. Furthermore, after what an infant eats can change his or her intestinal bacteria, which can further influence the development of these poor outcomes. In the present paper, we review the importance of birth cohorts, the formation and early findings from a multi-ethnic birth cohort alliance in Canada and summarise our future research directions for this birth cohort alliance. We summarise a method for harmonising collection and analysis of self-reported dietary data across multiple cohorts and provide examples of how this birth cohort alliance has contributed to our understanding of gestational diabetes risk; ethnic and diet-influences differences in the healthy infant microbiome; and the interplay between diet, ethnicity and birth weight. Ongoing work in this birth cohort alliance will focus on the use of metabolomic profiling to measure dietary intake, discovery of unique diet–gene and diet–epigenome interactions, and qualitative interviews with families of children at risk of metabolic syndrome. Our findings to-date and future areas of research will advance the evidence base that informs dietary guidelines in pregnancy, infancy and childhood, and will be relevant to diverse and high-risk populations of Canada and other high-income countries

    Does the impact of a plant-based diet during pregnancy on birth weight differ by ethnicity? A dietary pattern analysis from a prospective Canadian birth cohort alliance

    Get PDF
    Objective: Birth weight is an indicator of newborn health and a strong predictor of health outcomes in later life. Signicant variation in diet during pregnancy between ethnic groups in high-income countries provides an ideal opportunity to investigate the influence of maternal diet on birth weight. Setting: Four multiethnic birth cohorts based in Canada (the NutriGen Alliance). Participants: 3997 full-term mother–infant pairs of diverse ethnic groups who had principal component analysis-derived diet pattern scores—plant-based, Western and health-conscious—and birth weight data. Results: No associations were identified between the Western and health-conscious diet patterns and birth weight; however, the plant-based dietary pattern was inversely associated with birth weight (β=−67.6 g per 1-unit increase; P<0.001), and an interaction with non-white ethnicity and birth weight was observed. Ethnically stratified analyses demonstrated that among white Europeans, maternal consumption of a plant-based diet associated with lower birth weight (β=−65.9 g per 1-unit increase; P<0.001), increased risk of small-for-gestational age (SGA; OR=1.46; 95% CI 1.08 to 1.54;P=0.005) and reduced risk of large-for-gestational age (LGA; OR=0.71; 95% CI 0.53 to 0.95;P=0.02). Among South Asians, maternal consumption of a plant-based diet associated with a higher birth weight (β=+40.5 g per 1-unit increase; P=0.01), partially explained by cooked vegetable consumption. Conclusions: Maternal consumption of a plant-based diet during pregnancy is associated with birth weight. Among white Europeans, a plant-based diet is associated with lower birth weight, reduced odds of an infant born LGA and increased odds of SGA, whereas among South Asians living in Canada, a plant-based diet is associated with increased birth weight

    Studies to Improve Perinatal Health through Diet and Lifestyle among South Asian Women Living in Canada: A Brief History and Future Research Directions

    Get PDF
    South Asians (i.e., people who originate from India, Pakistan, Sri Lanka, Nepal, and Bangladesh) have higher cardiovascular disease rates than other populations, and these differences persist in their offspring. Nutrition is a critical lifestyle-related factor that influences fetal development, and infant and child health in early life. In high-income countries such as Canada, nutrition-related health risks arise primarily from overnutrition, most strikingly for obesity and associated non-communicable diseases. Evidence for developmental programming during fetal life underscores the critical influence of maternal diet on fetal growth and development, backed by several birth cohort studies including the Pune Maternal Nutrition Study, the South Asian Birth Cohort Study, and the Born in Bradford Study. Gestational diabetes mellitus is a strong risk factor for type 2 diabetes, future atherosclerosis and cardiovascular disease in the mother and increases the risk of type 2 diabetes in her offspring. Non-pharmacological trials to prevent gestational diabetes are few, often not randomized, and are heterogeneous with respect to design, and outcomes have not converged upon a single optimal prevention strategy. The aim of this review is to provide an understanding of the current knowledge around perinatal nutrition and gestational diabetes among the high-risk South Asian population as well as summarize our research activities investigating the role of culturally-tailored nutrition advice to South Asian women living in high-income settings such as Canada. In this paper, we describe these qualitative and quantitative studies, both completed and underway. We conclude with a description of the design of a randomized trial of a culturally tailored personalized nutrition intervention to reduce gestational glycaemia in South Asian women living in Canada and its implications

    Quality of Data Entry Using Single Entry, Double Entry and Automated Forms Processing–An Example Based on a Study of Patient-Reported Outcomes

    Get PDF
    Background: The clinical and scientific usage of patient-reported outcome measures is increasing in the health services. Often paper forms are used. Manual double entry of data is defined as the definitive gold standard for transferring data to an electronic format, but the process is laborious. Automated forms processing may be an alternative, but further validation is warranted. Methods: 200 patients were randomly selected from a cohort of 5777 patients who had previously answered two different questionnaires. The questionnaires were scanned using an automated forms processing technique, as well as processed by single and double manual data entry, using the EpiData Entry data entry program. The main outcome measure was the proportion of correctly entered numbers at question, form and study level. Results: Manual double-key data entry (error proportion per 1000 fields = 0.046 (95 % CI: 0.001–0.258)) performed better than single-key data entry (error proportion per 1000 fields = 0.370 (95 % CI: 0.160–0.729), (p = 0.020)). There was no statistical difference between Optical Mark Recognition (error proportion per 1000 fields = 0.046 (95 % CI: 0.001–0.258)) and double-key data entry (p = 1.000). With the Intelligent Character Recognition method, there was no statistical difference compared to single-key data entry (error proportion per 1000 fields = 6.734 (95 % CI: 0.817–24.113), (p = 0.656)), as well as double-key data entry (error proportion per 1000 fields = 3.367 (95 % CI: 0.085–18.616)), (p = 0.319))

    A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect

    Get PDF
    Cancer cells possess aberrant proteomes that can arise by the disruption of genes involved in physiological protein degradation. Here we demonstrate the presence of promoter CpG island hypermethylation-linked inactivation of DERL3 (Derlin-3), a key gene in the endoplasmic reticulum-associated protein degradation pathway, in human tumours. The restoration of in vitro and in vivo DERL3 activity highlights the tumour suppressor features of the gene. Using the stable isotopic labelling of amino acids in cell culture workflow for differential proteome analysis, we identify SLC2A1 (glucose transporter 1, GLUT1) as a downstream target of DERL3. Most importantly, SLC2A1 overexpression mediated by DERL3 epigenetic loss contributes to the Warburg effect in the studied cells and pinpoints a subset of human tumours with greater vulnerability to drugs targeting glycolysis.Seventh Framework Programme (European Commission) (Grant HEALTH-F5-2010-258236-SYSCOL)Seventh Framework Programme (European Commission) (Grant HEALTH-F2-2011-259015-COLTHERES)Cellex FoundationOlga Torres FoundationEuropean Research Council (EPINORC Project Grant Agreement 268626)Spain. Ministerio de Economia y Competividad (MINECO Project SAF2011-22803)Institute of Health Carlos III (RTICC Grant RD12/0036/0039

    Analysis of TSG101 tumour susceptibility gene transcripts in cervical and endometrial cancers

    Get PDF
    Carcinoma of the uterine cervix is a common malignancy among women that has been found to show loss of heterozygosity in the chromosome 11p. Recent studies have localized the TSG101 gene in this region, and also demonstrated a high frequency of abnormalities of this gene in human breast cancer. To determine the role of the TSG101 gene in the carcinogenesis of cervical and uterine carcinoma, 19 cases of cervical carcinoma and five cases of endometrial carcinoma, as well as nearby non-cancerous tissue from the same patients, and 16 blood samples from healthy persons as normal control were analysed by Southern blot analysis of genomic DNA, reverse transcription of the TSG101 mRNA followed by PCR amplification and sequencing of the products. We found that abnormal transcripts of the TSG101 gene were common both in cancerous or non-cancerous tissues of the uterus and cervix and in normal peripheral mononuclear cells. There was no genomic deletion or rearrangement in spite of the presence of abnormal transcripts, and no definite relationship between the abnormal transcripts and HPV infection was found. Although the frequency of abnormal transcripts was higher in cancerous than in non-cancerous tissue, normal peripheral mononuclear cells also had abnormal transcripts. Given these findings, the role of the TSG101 gene as a tumour-suppressor gene should be re-evaluated. Because some aberrant transcripts could be found at the first PCR reaction, we suggest that the aberrant transcripts might be the result of imperfect minor splicesome products. © 1999 Cancer Research Campaig

    The effect of the UP4FUN pilot intervention on objectively measured sedentary time and physical activity in 10-12 year old children in Belgium: the ENERGY-project

    Get PDF
    <p>Abstract</p> <p>Bakckground</p> <p>The first aim was to examine the effect of the UP4FUN pilot intervention on children’s total sedentary time. The second aim was to investigate if the intervention had an effect on children’s physical activity (PA) level. Finally, we aimed to investigate demographic differences (i.e. age, gender, ethnicity, living status and having siblings) between children in the intervention group who improved in sedentary time and PA at post-test and children in the intervention group who worsened in sedentary time and PA at post-test.</p> <p>Methods</p> <p>The six weeks UP4FUN intervention was tested in a randomized controlled trial with pre-test post-test design with five intervention and five control schools in Belgium and included children of the 5<sup>th</sup> and 6<sup>th</sup> grade. The children wore accelerometers for seven days at pre- and post-test. Analyses included children with valid accelerometer data for at least two weekdays with minimum 10h-wearing time and one weekend day with 8h-wearing time.</p> <p>Result</p> <p>Final analyses included 372 children (60% girls, mean age = 10.9 ± 0.7 years). There were no significant differences in the change in sedentary time or light PA between intervention and control schools for the total sample or for the subgroup analyses by gender. However, children (specifically girls) in the intervention group had a higher decrease in moderate-to-vigorous PA than children in the control group. In the intervention group, children who lived with both parents and children with one or more siblings were less likely to reduce sedentary time after exposure to the intervention. Older children, girls and children who lived with both parents were less likely to increase light PA after the intervention.</p> <p>Conclusion</p> <p>The UP4FUN intervention did not result in an effect on children’s sedentary time. Based on the high amounts of accelerometer-derived sedentary time in this age group, more efforts are needed to develop strategies to reduce children’s sedentary time.</p

    A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect

    Get PDF
    Cancer cells possess aberrant proteomes that can arise by the disruption of genes involved in physiological protein degradation. Here we demonstrate the presence of promoter CpG island hypermethylation-linked inactivation of DERL3 (Derlin-3), a key gene in the endoplasmic reticulum-associated protein degradation pathway, in human tumours. The restoration of in vitro and in vivo DERL3 activity highlights the tumour suppressor features of the gene. Using the stable isotopic labelling of amino acids in cell culture workflow for differential proteome analysis, we identify SLC2A1 (glucose transporter 1, GLUT1) as a downstream target of DERL3. Most importantly, SLC2A1 overexpression mediated by DERL3 epigenetic loss contributes to the Warburg effect in the studied cells and pinpoints a subset of human tumours with greater vulnerability to drugs targeting glycolysis

    Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation.

    Get PDF
    Highly aqueously dispersible (soluble) TiO2 nanoparticles are usually synthesized by a solution-based sol-gel (solvolysis/condensation) process, and no direct precipitation of titania has been reported. This paper proposes a new approach to synthesize stable TiO2 nanoparticles by a non-solvolytic method - direct liquid phase precipitation at room temperature. Ligand-capped TiO2 nanoparticles are more readily solubilized compared to uncapped TiO2 nanoparticles, and these capped materials show distinct optical absorbance/emission behaviors. The influence of ligands, way of reactant feeding, and post-treatment on the shape, size, crystalline structure, and surface chemistry of the TiO2 nanoparticles has been thoroughly investigated by the combined use of X-ray diffraction, transmission electron microscopy, UV-visible (UV-vis) spectroscopy, and photoluminescence (PL). It is found that all above variables have significant effects on the size, shape, and dispersivity of the final TiO2 nanoparticles. For the first time, real-time UV-vis spectroscopy and PL are used to dynamically detect the formation and growth of TiO2 nanoparticles in solution. These real-time measurements show that the precipitation process begins to nucleate after an initial inhibition period of about 1 h, thereafter a particle growth occurs and reaches the maximum point after 2 h. The synthesis reaction is essentially completed after 4 h.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
    corecore