115 research outputs found
Ultrafast Acousto-Plasmonics in Gold Nanoparticles Superlattice
We report the investigation of the generation and detection of GHz coherent
acoustic phonons in plasmonic gold nanoparticles superlattices (NPS). The
experiments have been performed from an optical femtosecond pump-probe scheme
across the optical plasmon resonance of the superlattice. Our experiments allow
to estimate the collective elastic response (sound velocity) of the NPS as well
as an estimate of the nano-contact elastic stiffness. It appears that the
light-induced coherent acoustic phonon pulse has a typical in-depth spatial
extension of about 45 nm which is roughly 4 times the optical skin depth in
gold. The modeling of the transient optical reflectivity indicates that the
mechanism of phonon generation is achieved through ultrafast heating of the NPS
assisted by light excitation of the volume plasmon. These results demonstrate
how it is possible to map the photon-electron-phonon interaction in
subwavelength nanostructures
Low sensitivity to optical feedback and optical injection of discrete mode lasers
In this paper, we demonstrate the low sensitivity to both external optical feedback and external optical injection of a new type of extremely low cost single-mode lasers, called "discrete mode" (DM) lasers. The DM lasers are obtained from ridge waveguide Fabry Perot (FP) lasers, in which the effective refractive index of the lasing mode has been perturbed. These lasers exhibit a low sensitivity to external optical feedback since the coherence collapse threshold is around 5 dB higher in comparison to a commercial DFB laser
DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra
De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com.acceptedVersio
Quantum size effect on charges and phonons ultrafast dynamics in atomically controlled nanolayers of topological insulators Bi2Te3
This work was supported by the French Ministry of Education and Research, the CNRS, Region Pays de la Loire (CPER Femtosecond Spectroscopy equipment program) and the LIA-CNRS (Laboratoire International Associé) IM-LED. The partial financial support from National Science Center under project 2016/21/B/ST5/02531 is acknowledged. R. Rapacz was supported by FORSZT PhD fellowship.Heralded as one of the key elements for next generation spintronics devices, topological insulators (TIs) are now step by step envisioned as nanodevices like charge-to-spin current conversion or as Dirac fermions based nanometer Schottky diode for example. However, reduced to few nanometers, TIs layers exhibit a profound modification of the electronic structure and the consequence of this quantum size effect on the fundamental carriers and phonons ultrafast dynamics has been poorly investigated so far. Here, thanks to a complete study of a set of high quality molecular beam epitaxy grown nanolayers, we report the existence of a critical thickness of around ~6 nm, below which a spectacular reduction of the carrier relaxation time by a factor of ten is found in comparison to bulk Bi2 Te3 In addition, we also evidence an A1g optical phonon mode softening together with the appearance of a thickness dependence of the photoinduced coherent acoustic phonons signals. This drastic evolution of the carriers and phonons dynamics might be due an important electron-phonon coupling evolution due to the quantum confinement. These properties have to be taken into account for future TIs-based spintronic devices.Centre National de la Recherche Scientifiqu
Coherent acoustic phonons generated by ultrashort terahertz pulses in nanofilms of metals and topological insulators
We report the generation of coherent acoustic phonons in materials with terahertz ultrashort pulses. This
is demonstrated in metals and topological insulators by exciting an acoustic eigenmode in nanometric-sized
thin films. The efficiency of the coupling is quadratic in the terahertz electric field strength within the range
of investigation. Owing to a quantitative comparison between terahertz and near-infrared ultrashort pulse
excitations, we show that the process of acoustic phonon generation by terahertz radiation is mainly driven
by thermoelastic stress. While for the near-infrared light excitation the lattice temperature increase comes
from a rapid energy transfer from the hot carriers to the phonon bath during carrier intraband relaxation, the
thermoelastic stress induced by the terahertz electric field is linked to the scattering of the accelerated electrons
leading to an ultrafast Joule effect
Non-thermal transport of energy driven by photoexcited carriers in switchable solid states of GeTe
Phase change alloys have seen widespread use from rewritable optical discs to
the present day interest in their use in emerging neuromorphic computing
architectures. In spite of this enormous commercial interest, the physics of
carriers in these materials is still not fully understood. Here, we describe
the time and space dependence of the coupling between photoexcited carriers and
the lattice in both the amorphous and crystalline states of one phase change
material, GeTe. We study this using a time-resolved optical technique called
picosecond acoustic method to investigate the \textit{in situ} thermally
assisted amorphous to crystalline phase transformation in GeTe. Our work
reveals a clear evolution of the electron-phonon coupling during the phase
transformation as the spectra of photoexcited acoustic phonons in the amorphous
(-GeTe) and crystalline (-GeTe) phases are different. In particular
and surprisingly, our analysis of the photoinduced acoustic pulse duration in
crystalline GeTe suggests that a part of the energy deposited during the
photoexcitation process takes place over a distance that clearly exceeds that
defined by the pump light skin depth. In the opposite, the lattice
photoexcitation process remains localized within that skin depth in the
amorphous state. We then demonstrate that this is due to supersonic diffusion
of photoexcited electron-hole plasma in the crystalline state. Consequently
these findings prove the existence of a non-thermal transport of energy which
is much faster than lattice heat diffusion
Diversity in Protein Glycosylation among Insect Species
status: publishe
- âŠ