120 research outputs found

    A mathematical modelling study of an athlete's sprint time when towing a weighted sled

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s12283-013-0114-2.This study used a mathematical model to examine the effects of the sled, the running surface, and the athlete on sprint time when towing a weighted sled. Simulations showed that ratio scaling is an appropriate method of normalising the weight of the sled for athletes of different body size. The relationship between sprint time and the weight of the sled was almost linear, as long as the sled was not excessively heavy. The athlete’s sprint time and rate of increase in sprint time were greater on running surfaces with a greater coefficient of friction, and on any given running surface an athlete with a greater power-to-weight ratio had a lower rate of increase in sprint time. The angle of the tow cord did not have a substantial effect on an athlete’s sprint time. This greater understanding should help coaches set the training intensity experienced by an athlete when performing a sled-towing exercise

    Lower limb joint kinetics during the first stance phase in athletics sprinting: three elite athlete case-studies

    Get PDF
    This study analysed the first stance phase joint kinetics of three elite sprinters to improve the understanding of technique and investigate how individual differences in technique could influence the resulting levels of performance. Force (1000 Hz) and video (200 Hz) data were collected and resultant moments, power and work at the stance leg metatarsal-phalangeal (MTP), ankle, knee and hip joints were calculated. The MTP and ankle joints both exhibited resultant plantarflexor moments throughout stance. Whilst the ankle joint generated up to four times more energy than it absorbed, the MTP joint was primarily an energy absorber. Knee extensor resultant moments and power were produced throughout the majority of stance, and the best-performing sprinter generated double and four times the amount of knee joint energy compared to the other two sprinters. The hip joint extended throughout stance. Positive hip extensor energy was generated during early stance before energy was absorbed at the hip as the resultant moment became flexor-dominant towards toe-off. The generation of energy at the ankle appears to be of greater importance than in later phases of a sprint, whilst knee joint energy generation may be vital for early acceleration and is potentially facilitated by favourable kinematics at touchdown

    Exotendons for assistance of human locomotion

    Get PDF
    BACKGROUND: Powered robotic exoskeletons for assistance of human locomotion are currently under development for military and medical applications. The energy requirements for such devices are excessive, and this has become a major obstacle for practical applications. Legged locomotion in many animals, however, is very energy efficient. We propose that poly-articular elastic mechanisms are a major contributor to the economy of locomotion in such specialized animals. Consequently, it should be possible to design unpowered assistive devices that make effective use of similar mechanisms. METHODS: A passive assistive technology is presented, based on long elastic cords attached to an exoskeleton and guided by pulleys placed at the joints. A general optimization procedure is described for finding the best geometrical arrangement of such "exotendons" for assisting a specific movement. Optimality is defined either as minimal residual joint moment or as minimal residual joint power. Four specific exotendon systems with increasing complexity are considered. Representative human gait data were used to optimize each of these four systems to achieve maximal assistance for normal walking. RESULTS: The most complex exotendon system, with twelve pulleys per limb, was able to reduce the joint moments required for normal walking by 71% and joint power by 74%. A simpler system, with only three pulleys per limb, could reduce joint moments by 46% and joint power by 47%. CONCLUSION: It is concluded that unpowered passive elastic devices can substantially reduce the muscle forces and the metabolic energy needed for walking, without requiring a change in movement. When optimally designed, such devices may allow independent locomotion in patients with large deficits in muscle function

    From Oxford to Hawaii Ecophysiological Barriers Limit Human Progression in Ten Sport Monuments

    Get PDF
    In order to understand the determinants and trends of human performance evolution, we analyzed ten outdoor events among the oldest and most popular in sports history. Best performances of the Oxford-Cambridge boat race (since 1836), the channel crossing in swimming (1875), the hour cycling record (1893), the Elfstedentocht speed skating race (1909), the cross country ski Vasaloppet (1922), the speed ski record (1930), the Streif down-hill in Kitzbühel (1947), the eastward and westward sailing transatlantic records (1960) and the triathlon Hawaii ironman (1978) all follow a similar evolutive pattern, best described through a piecewise exponential decaying model (r2 = 0.95±0.07). The oldest events present highest progression curvature during their early phase. Performance asymptotic limits predicted from the model may be achieved in fourty years (2049±32 y). Prolonged progression may be anticipated in disciplines which further rely on technology such as sailing and cycling. Human progression in outdoor sports tends to asymptotic limits depending on physiological and environmental parameters and may temporarily benefit from further technological progresses

    The between and within day variation in gross efficiency

    Get PDF
    Before the influence of divergent factors on gross efficiency (GE) [the ratio of mechanical power output (PO) to metabolic power input (PI)] can be assessed, the variation in GE between days, i.e. the test–retest reliability, and the within day variation needs to be known. Physically active males (n = 18) performed a maximal incremental exercise test to obtain VO2max and PO at VO2max (PVO2max), and three experimental testing days, consisting of seven submaximal exercise bouts evenly distributed over the 24 h of the day. Each submaximal exercise bout consisted of six min cycling at 45, 55 and 65% PVO2max, during which VO2 and RER were measured. GE was determined from the final 3 min of each exercise intensity with: GE = (PO/PI) × 100%. PI was calculated by multiplying VO2 with the oxygen equivalent. GE measured during the individually highest exercise intensity with RER <1.0 did not differ significantly between days (F = 2.70, p = 0.08), which resulted in lower and upper boundaries of the 95% limits of agreement of 19.6 and 20.8%, respectively, around a mean GE of 20.2%. Although there were minor within day variations in GE, differences in GE over the day were not significant (F = 0.16, p = 0.99). The measurement of GE during cycling at intensities approximating VT is apparently very robust, a change in GE of ~0.6% can be reliably detected. Lastly, GE does not display a circadian rhythm so long as the criteria of a steady-state VO2 and RER <1.0 are applied

    Ground reaction force differences in the countermovement jump in girls with different levels of performance

    Get PDF
    Purpose: The aim of this study was to ascertain the biomechanical differences between better and poorer performers of the vertical jump in a homogeneous group of children. Method: Twenty-four girls were divided into low-scoring (LOW; M age = 6.3 ± 0.8 years) and high-scoring (HIGH; M age = 6.6 ± 0.8 years) groups based on their performance on the vertical jump. The force-, velocity-, displacement-, and rate of force development (RFD)-time curves of vertical jumps were analyzed to determine the differences between groups. Results: The analysis of the data showed differences in the pattern of the ensemble mean curves of the HIGH and LOW groups, although the majority of the differences occurred during the eccentric contraction phase of the jump. The differences in the HIGH group with respect to the LOW group were: lower force at the beginning of the movement, higher speed and RFD during the eccentric phase, high force at the beginning of the concentric phase, higher velocity during the concentric phase, and a higher position at takeoff. Conclusion: The results showed that the HIGH group achieved a higher jump height than did the LOW group by increasing the effectiveness of the countermovement and achieving a more advantageous position at takeoff.Centro de Investigación en Rendimiento Físico y Deportiv

    Mechanical output about the ankle joint in isokinetic plantar flexion and jumping

    No full text
    The purpose of this study was to compare for a group of ten subjects the mechanical output about the ankle during isokinetic plantar flexion with that during one-legged vertical jumps. For evaluation of the mechanical output the plantar flexion moment of force was related to the angular velocity of plantar flexion. The relationship for isokinetic plantar flexion was obtained using an isokinetic dynamometer; that for plantar flexion in jumping was obtained by combining kinematics and ground reaction forces. It was found that, at any given angular velocity of plantar flexion above 1 rad.s-1, the subjects produced much larger moments during jumping than during isokinetic plantar flexion. In order to explain the observed differences in mechanical output about the ankle, a model was used to simulate isokinetic plantar flexion and plantar flexion during jumping. The model represented both m. soleus and m. gastrocnemius as a complex composed of elastic tissue in series with muscle fibers. The force of the muscle fibers depended on fiber length, shortening velocity (Vfibers), and active state. The input variables of the model were histories of shortening velocities of the complexes, determined from kinematics, and active state. Among the output variables were Vfibers and plantar flexion moment. The simulation results were very similar to the experimental findings. According to the simulation results there are two reasons why at the same angular velocity of plantar flexion larger moments were produced during jumping than during isokinetic plantar flexion.(ABSTRACT TRUNCATED AT 250 WORDS

    The global design of the hindlimb in quadrupeds

    No full text
    In the hindlimb of quadrupeds three major segments can be distinguished which can rotate with respect to each other in the hip. knee and ankle joints. Movements in a sagittal plane appear to be controlled by three sets of antagonistic mono-articular muscle groups (one set per joint) and two sets of antagonistic bi-articular muscles. This design allows co-activations of mono-articular agonists and their bi-articular antagonists. These co-contractions occur for example in ballistic tasks such as jumping where the transfer of angular acceleration in the joints into the translational acceleration of the hip decreases as a function of joint extension. Well-trained humans appear to solve this problem by a distinct proximodistal sequence in the timing of the joint extensions and a transport of energy via bi-articular muscles. This can also be observed in a number of animals. A second example has to do with the necessity for a certain distribution of net moments in the joints which is required to control the direction and magnitude of the external force on the ground. The control of these moments can to a large extent be judged as a requirement which is independent of the joint displacements required in the same task. Many walking, running or pulling tasks, for example, require knee extension combined with a net knee flexing moment. Coactivation of mono-articular agonists and their bi-articular antagonists appear to solve these problems in an effective and efficient way
    corecore