762 research outputs found
Lattice-Boltzmann Model of Amphiphilic Systems
A lattice-Boltzmann model for the study of the dynamics of
oil-water-surfactant mixtures is constructed. The model, which is based on a
Ginzburg-Landau theory of amphiphilic systems with a single, scalar order
parameter, is then used to calculate the spectrum of undulation modes of an
oil-water interface and the spontaneous emulsification of oil and water after a
quench from two-phase coexistence into the lamellar phase. A comparison with
some analytical results shows that the model provides an accurate description
of the static and dynamic behavior of amphiphilic systems.Comment: 6 pages, 2 figures, europhysics-letter styl
Estimating the Probability of Informed Trading: Does Trade Misclassification Matter?
Easley / Kiefer / O'Hara / Paperman (1996) (EKOP) have proposed an empirical methodology that allows to estimate the probability of informed trading and that has subsequently been used to address a wide range of issues in market microstructure. The data needed for estimation is the number of buyer- and seller-initiated trades. This information often has to be inferred by applying trade classification algorithms like the one proposed by Lee / Ready (1991). These algorithms are known to be inaccurate. In this paper we perform extensive simulations to show that inaccurate trade classification leads to biased estimation of the probability of informed trading when applying the EKOP methodology. The estimate is biased downward and the magnitude of the bias is related to the trading intensity of the stock in question. Scrutinizing prior empirical studies using the EKOP methodology, we conclude that the bias may severely affect the results of empirical microstructure studies
Pre-breakup magmatism on the Vøring margin: Insight from new sub-basalt imaging and results from Ocean Drilling program hole 642E
Highlights
• Sub-basalt imaging improvement on the Vøring Margin
• Definition of a new seismic facies unit: the Lower Series Flows
• Significant organic carbon content within the melting crustal segment
• Apectodinium augustum marker for the PETM is reworked into the Lower Series Flows
• The Lower Series Flows, early Eocene in age, predate the Vøring Margin breakup
Abstract
Improvements in sub-basalt imaging combined with petrological and geochemical observations from the Ocean Drilling Program (ODP) Hole 642E core provide new constraints on the initial breakup processes at the Vøring Margin. New and reprocessed high quality seismic data allow us to identify a new seismic facies unit which we define as the Lower Series Flows. This facies unit is seismically characterized by wavy to continuous subparallel reflections with an internal disrupted and hummocky shape. Drilled lithologies, which we correlate to this facies unit, have been interpreted as subaqueous flows extruding and intruding into wet sediments. Locally, the top boundary of this facies unit is defined as a negative in polarity reflection, and referred as the K-Reflection. This reflection can be correlated with the spatial extent of pyroclastic deposits, emplaced during transitional shallow marine to subaerial volcanic activities during the rift to drift transition. The drilled Lower Series Flows consist of peraluminous, cordierite bearing peperitic basaltic andesitic to dacitic flows interbedded with thick volcano-sedimentary deposits and intruded sills. The peraluminous geochemistry combined with available C (from calcite which fills vesicles and fractures), Sr, Nd, and Pb isotopes data point towards upper crustal rock-mantle magma interactions with a significant contribution of organic carbon rich pelagic sedimentary material during crustal anatexis. From biostratigraphic analyses, Apectodinium augustum was found in the The Lower Series Flows. This species is a marker for the Paleocene – Eocene Thermal Maximum (PETM). However, the absence of very low carbon isotope values (from bulk organic matter), that characterize the PETM, imply that A.augustum was reworked into the early Eocene sediments of this facies unit which predate the breakup time of the Vøring Margin.
Finally, a plausible conceptual emplacement model for the Lower Series Flows facies unit is proposed. This model comprises several stages: (1) the emplacement of subaqueous peperitic basaltic andesitic flows intruding and/or extruding wet sediments; (2) a subaerial to shallow marine volcanism and extrusion of dacitic flows; (3) a proto-breakup phase with intense shallow marine to subaerial explosive volcanism responsible for pyroclastic flow deposits which can be correlated with the seismic K-Reflection and (4) the main breakup stage with intense transitional tholeiitic MORB-type volcanism and large subsidence concomitant with the buildup of the Seaward Dipping Reflector wedge
Lattice Boltzmann Simulations of Liquid Crystal Hydrodynamics
We describe a lattice Boltzmann algorithm to simulate liquid crystal
hydrodynamics. The equations of motion are written in terms of a tensor order
parameter. This allows both the isotropic and the nematic phases to be
considered. Backflow effects and the hydrodynamics of topological defects are
naturally included in the simulations, as are viscoelastic properties such as
shear-thinning and shear-banding.Comment: 14 pages, 5 figures, Revte
Fluctuations of elastic interfaces in fluids: Theory and simulation
We study the dynamics of elastic interfaces-membranes-immersed in thermally
excited fluids. The work contains three components: the development of a
numerical method, a purely theoretical approach, and numerical simulation. In
developing a numerical method, we first discuss the dynamical coupling between
the interface and the surrounding fluids. An argument is then presented that
generalizes the single-relaxation time lattice-Boltzmann method for the
simulation of hydrodynamic interfaces to include the elastic properties of the
boundary. The implementation of the new method is outlined and it is tested by
simulating the static behavior of spherical bubbles and the dynamics of bending
waves. By means of the fluctuation-dissipation theorem we recover analytically
the equilibrium frequency power spectrum of thermally fluctuating membranes and
the correlation function of the excitations. Also, the non-equilibrium scaling
properties of the membrane roughening are deduced, leading us to formulate a
scaling law describing the interface growth, W^2(L,T)=L^3 g[t/L^(5/2)], where
W, L and T are the width of the interface, the linear size of the system and
the temperature respectively, and g is a scaling function. Finally, the
phenomenology of thermally fluctuating membranes is simulated and the frequency
power spectrum is recovered, confirming the decay of the correlation function
of the fluctuations. As a further numerical study of fluctuating elastic
interfaces, the non-equilibrium regime is reproduced by initializing the system
as an interface immersed in thermally pre-excited fluids.Comment: 15 pages, 11 figure
MRI of the lung (3/3)-current applications and future perspectives
BACKGROUND: MRI of the lung is recommended in a number of clinical indications. Having a non-radiation alternative is particularly attractive in children and young subjects, or pregnant women. METHODS: Provided there is sufficient expertise, magnetic resonance imaging (MRI) may be considered as the preferential modality in specific clinical conditions such as cystic fibrosis and acute pulmonary embolism, since additional functional information on respiratory mechanics and regional lung perfusion is provided. In other cases, such as tumours and pneumonia in children, lung MRI may be considered an alternative or adjunct to other modalities with at least similar diagnostic value. RESULTS: In interstitial lung disease, the clinical utility of MRI remains to be proven, but it could provide additional information that will be beneficial in research, or at some stage in clinical practice. Customised protocols for chest imaging combine fast breath-hold acquisitions from a "buffet" of sequences. Having introduced details of imaging protocols in previous articles, the aim of this manuscript is to discuss the advantages and limitations of lung MRI in current clinical practice. CONCLUSION: New developments and future perspectives such as motion-compensated imaging with self-navigated sequences or fast Fourier decomposition MRI for non-contrast enhanced ventilation- and perfusion-weighted imaging of the lung are discussed. Main Messages • MRI evolves as a third lung imaging modality, combining morphological and functional information. • It may be considered first choice in cystic fibrosis and pulmonary embolism of young and pregnant patients. • In other cases (tumours, pneumonia in children), it is an alternative or adjunct to X-ray and CT. • In interstitial lung disease, it serves for research, but the clinical value remains to be proven. • New users are advised to make themselves familiar with the particular advantages and limitations
Hydrogen-poor superluminous stellar explosions
Supernovae (SNe) are stellar explosions driven by gravitational or
thermonuclear energy, observed as electromagnetic radiation emitted over weeks
or more. In all known SNe, this radiation comes from internal energy deposited
in the outflowing ejecta by either radioactive decay of freshly-synthesized
elements (typically 56Ni), stored heat deposited by the explosion shock in the
envelope of a supergiant star, or interaction between the SN debris and
slowly-moving, hydrogen-rich circumstellar material. Here we report on a new
class of luminous SNe whose observed properties cannot be explained by any of
these known processes. These include four new SNe we have discovered, and two
previously unexplained events (SN 2005ap; SCP 06F6) that we can now identify as
members. These SNe are all ~10 times brighter than SNe Ia, do not show any
trace of hydrogen, emit significant ultra-violet (UV) flux for extended periods
of time, and have late-time decay rates which are inconsistent with
radioactivity. Our data require that the observed radiation is emitted by
hydrogen-free material distributed over a large radius (~10^15 cm) and
expanding at high velocities (>10^4 km s^-1). These long-lived, UV-luminous
events can be observed out to redshifts z>4 and offer an excellent opportunity
to study star formation in, and the interstellar medium of, primitive distant
galaxies.Comment: Accepted to Nature. Press embargoed until 2011 June 8, 18:00 U
- …