15 research outputs found
Time-resolved measurement of Landau--Zener tunneling in different bases
A comprehensive study of the tunneling dynamics of a Bose--Einstein
condensate in a tilted periodic potential is presented. We report numerical and
experimental results on time-resolved measurements of the Landau--Zener
tunneling of ultracold atoms introduced by the tilt, which experimentally is
realized by accelerating the lattice. The use of different protocols enables us
to access the tunneling probability, numerically as well as experimentally, in
two different bases, namely, the adiabatic basis and the diabatic basis. The
adiabatic basis corresponds to the eigenstates of the lattice, and the diabatic
one to the free-particle momentum eigenstates. Our numerical and experimental
results are compared with existing two-state Landau--Zener models
Ground state study of simple atoms within a nano-scale box
Ground state energies for confined hydrogen (H) and helium (He) atoms, inside
a penetrable/impenetrable compartment have been calculated using Diffusion
Monte Carlo (DMC) method. Specifically, we have investigated spherical and
ellipsoidal encompassing compartments of a few nanometer size. The potential is
held fixed at a constant value on the surface of the compartment and beyond.
The dependence of ground state energy on the geometrical characteristics of the
compartment as well as the potential value on its surface has been thoroughly
explored. In addition, we have investigated the cases where the nucleus
location is off the geometrical centre of the compartment.Comment: 9 pages, 5 eps figures, Revte
Ground state properties of a confined simple atom by C fullerene
We numerically study the ground state properties of endohedrally confined
hydrogen (H) or helium (He) atom by a molecule of C. Our study is based
on Diffusion Monte Carlo method. We calculate the effects of centered and small
off-centered H- or He-atom on the ground state properties of the systems and
describe the variation of ground state energies due to the C parameters
and the confined atomic nuclei positions. Finally, we calculate the electron
distributions in plane in a wide range of C parameters.Comment: 23 pages, 9 figures. To appear in J.Phys. B: Atom. Mol. Op
High-fidelity quantum driving
The ability to accurately control a quantum system is a fundamental
requirement in many areas of modern science such as quantum information
processing and the coherent manipulation of molecular systems. It is usually
necessary to realize these quantum manipulations in the shortest possible time
in order to minimize decoherence, and with a large stability against
fluctuations of the control parameters. While optimizing a protocol for speed
leads to a natural lower bound in the form of the quantum speed limit rooted in
the Heisenberg uncertainty principle, stability against parameter variations
typically requires adiabatic following of the system. The ultimate goal in
quantum control is to prepare a desired state with 100% fidelity. Here we
experimentally implement optimal control schemes that achieve nearly perfect
fidelity for a two-level quantum system realized with Bose-Einstein condensates
in optical lattices. By suitably tailoring the time-dependence of the system's
parameters, we transform an initial quantum state into a desired final state
through a short-cut protocol reaching the maximum speed compatible with the
laws of quantum mechanics. In the opposite limit we implement the recently
proposed transitionless superadiabatic protocols, in which the system perfectly
follows the instantaneous adiabatic ground state. We demonstrate that
superadiabatic protocols are extremely robust against parameter variations,
making them useful for practical applications.Comment: 17 pages, 4 figure
Erratum to: Engineering of Landau–Zener tunneling
Erratum to: Appl Phys B (2011) 102:489–49
Time-Resolved Measurement of Landau-Zener Tunneling in Periodic Potentials
We report time-resolved measurements of Landau-Zener tunneling of Bose-Einstein condensates in accelerated optical lattices, clearly resolving the steplike time dependence of the band populations. Using different experimental protocols we were able to measure the tunneling probability both in the adiabatic and in the diabatic bases of the system. We also experimentally determine the contribution of the momentum width of the Bose condensates to the temporal width of the tunneling steps and discuss the implications for measuring the jump time in the Landau-Zener problem
Time-resolved measurement of Landau-Zener tunneling in periodic potentials
SUMMARY We report time-resolved measurements of Landau-Zener tunneling of
Bose-Einstein condensates in accelerated optical lattices, clearly resolving
the step-like time dependence of the band populations. Using different
experimental protocols we were able to measure the tunneling probability both
in the adiabatic and in the diabatic bases of the system. We also
experimentally determine the contribution of the momentum width of the Bose
condensates to the width of the tunneling steps and discuss the implications
for measuring the jump time in the Landau-Zener problem