232 research outputs found

    "Jnking” atherosclerosis

    Get PDF
    Abstract.: Numerous studies in animal models established a key role of the C-jun N-terminal kinase (JNK) family (JNK1, JNK2 and JNK3) in numerous pathological conditions, including cancer, cardiac hypertrophy and failure, neurodegenerative disorders, diabetes, arthritis and asthma. A possible function of JNK in atherosclerosis remained uncertain since conclusions have mainly been based on in vitro studies investigating endothelial cell activation, T-effector cell differentiation and proliferation of vascular smooth muscle cells, all of which represent crucial cellular processes involved in atherosclerosis. However, recent experiments demonstrated that macrophage-restricted deletion of JNK2 was sufficient to efficiently reduce atherosclerosis in mice. Furthermore, it has been shown that JNK2 specifically promotes scavenger receptor A-mediated foam cell formation, an essential step during early atherogenesis, which occurs when vascular macrophages internalize modified lipoproteins. Thus, specific inhibition of JNK2 activity may emerge as a novel and promising therapeutic approach to attenuate atheroma formation in the future. In this review, we discuss JNK-dependent cellular and molecular mechanisms underlying atherosclerosi

    Association with Aurora-A controls N-MYC-dependent promoter escape and pause release of RNA polymerase II during the cell cycle

    Get PDF
    MYC proteins bind globally to active promoters and promote transcriptional elongation by RNA polymerase II (Pol II). To identify effector proteins that mediate this function, we performed mass spectrometry on N-MYC complexes in neuroblastoma cells. The analysis shows that N-MYC forms complexes with TFIIIC, TOP2A, and RAD21, a subunit of cohesin. N-MYC and TFIIIC bind to overlapping sites in thousands of Pol II promoters and intergenic regions. TFIIIC promotes association of RAD21 with N-MYC target sites and is required for N-MYC-dependent promoter escape and pause release of Pol II. Aurora-A competes with binding of TFIIIC and RAD21 to N-MYC in vitro and antagonizes association of TOP2A, TFIIIC, and RAD21 with N-MYC during S phase, blocking N-MYC-dependent release of Pol II from the promoter. Inhibition of Aurora-A in S phase restores RAD21 and TFIIIC binding to chromatin and partially restores N-MYC-dependent transcriptional elongation. We propose that complex formation with Aurora-A controls N-MYC function during the cell cycle

    Teacher Tasks for Mathematical Insight and Reorganization of What it Means to Learn Mathematics

    Get PDF
    The mathematics-for-teachers tasks we discuss in this chapter have two qualities: (1) they offer teachers opportunities to experience the pleasure of mathematical insight; and (2) they aim to disrupt and reorganize teachers\u27 views of what it means to do and learn mathematics. Given that many future and inservice elementary teachers fear and dislike mathematics, it is perhaps not too far-fetched to suggest that there is a need for β€œmath therapy.” We believe that a form of mathematics therapy may involve new and different experiences with mathematics. Such experiences, considered broadly to include questions or prompts for mathematical exploration, draw attention to deep mathematical ideas and offer the potential of experiencing the pleasure of significant mathematical insight. In our work with teachers we have developed and used a variety of mathematics tasks as opportunities for experiential therapy. The tasks aim to challenge some of the mathematical myths that future teachers believe to be true and are typically assumed by them in mathematics classrooms. The tasks have potential to disrupt teachers\u27 view of mathematics, and to start the process for reorganizing their thinking about what mathematics is and what it means to do and learn mathematics. In this chapter we describe and discuss four of the mathematics tasks which involve non-routine mathematics problems that we use in our mathematics-for-teachers program. This program is offered annually to our 440 future elementary school (K-8) teachers, who generally lack confidence in mathematics and often fear and/or dislike the subject. It is also offered to inservice teachers through a series of mathematics-for-teachers courses. A student response summarizes the effects of our approach

    Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms

    Get PDF
    OBJECTIVE: Sirtuins (SIRTs) are NAD(+)-dependent deacetylases that regulate metabolism and life span. We used peripheral blood mononuclear cells (PBMCs) to determine ex vivo whether insulin resistance/metabolic syndrome influences SIRTs. We also assessed the potential mechanisms linking metabolic alterations to SIRTs in human monocytes (THP-1) in vitro. RESEARCH DESIGN AND METHODS: SIRT1-SIRT7 gene and protein expression was determined in PBMCs of 54 subjects (41 with normal glucose tolerance and 13 with metabolic syndrome). Insulin sensitivity was assessed by the minimal model analysis. Subclinical atherosclerosis was assessed by carotid intima-media thickness (IMT). In THP-1 cells exposed to high glucose or fatty acids in vitro, we explored SIRT1 expression, p53 acetylation, Jun NH(2)-terminal kinase (JNK) activation, NAD(+) levels, and nicotinamide phosphoribosyltransferase (NAMPT) expression. The effects of SIRT1 induction by resveratrol and of SIRT1 gene silencing were also assessed. RESULTS: In vivo, insulin resistance and metabolic syndrome were associated with low PBMC SIRT1 gene and protein expression. SIRT1 gene expression was negatively correlated with carotid IMT. In THP-1 cells, high glucose and palmitate reduced SIRT1 and NAMPT expression and reduced the levels of intracellular NAD(+) through oxidative stress. No effect was observed in cells exposed to linoleate or insulin. High glucose and palmitate increased p53 acetylation and JNK phosphorylation; these effects were abolished in siRNA SIRT1-treated cells. Glucose- and palmitate-mediated effects on NAMPT and SIRT1 were prevented by resveratrol in vitro. CONCLUSIONS: Insulin resistance and subclinical atherosclerosis are associated with SIRT1 downregulation in monocytes. Glucotoxicity and lypotoxicity play a relevant role in quenching SIRT1 expression

    JNK2 Promotes Endothelial Cell Alignment under Flow

    Get PDF
    Endothelial cells in straight, unbranched segments of arteries elongate and align in the direction of flow, a feature which is highly correlated with reduced atherosclerosis in these regions. The mitogen-activated protein kinase c-Jun N-terminal kinase (JNK) is activated by flow and is linked to inflammatory gene expression and apoptosis. We previously showed that JNK activation by flow is mediated by integrins and is observed in cells plated on fibronectin but not on collagen or basement membrane proteins. We now show thatJNK2 activation in response to laminar shear stress is biphasic, with an early peak and a later peak. Activated JNK localizes to focal adhesions at the ends of actin stress fibers, correlates with integrin activation and requires integrin binding to the extracellular matrix. Reducing JNK2 activation by siRNA inhibits alignment in response to shear stress. Cells on collagen, where JNK activity is low, align slowly. These data show that an inflammatory pathway facilitates adaptation to laminar flow, thereby revealing an unexpected connection between adaptation and inflammatory pathways

    APC/CCdh1-Mediated Degradation of the F-Box Protein NIPA Is Regulated by Its Association with Skp1

    Get PDF
    NIPA (Nuclear Interaction Partner of Alk kinase) is an F-box like protein that targets nuclear Cyclin B1 for degradation. Integrity and therefore activity of the SCFNIPA E3 ligase is regulated by cell-cycle-dependent phosphorylation of NIPA, restricting substrate ubiquitination to interphase. Here we show that phosphorylated NIPA is degraded in late mitosis in an APC/CCdh1-dependent manner. Binding of the unphosphorylated form of NIPA to Skp1 interferes with binding to the APC/C-adaptor protein Cdh1 and therefore protects unphosphorylated NIPA from degradation in interphase. Our data thus define a novel mode of regulating APC/C-mediated ubiquitination

    Uncoordinated Loss of Chromatid Cohesion Is a Common Outcome of Extended Metaphase Arrest

    Get PDF
    Chromosome segregation requires coordinated separation of sister chromatids following biorientation of all chromosomes on the mitotic spindle. Chromatid separation at the metaphase-to-anaphase transition is accomplished by cleavage of the cohesin complex that holds chromatids together. Here we show using live-cell imaging that extending the metaphase bioriented state using five independent perturbations (expression of non-degradable Cyclin B, expression of a Spindly point mutant that prevents spindle checkpoint silencing, depletion of the anaphase inducer Cdc20, treatment with a proteasome inhibitor, or treatment with an inhibitor of the mitotic kinesin CENP-E) leads to eventual scattering of chromosomes on the spindle. This scattering phenotype is characterized by uncoordinated loss of cohesion between some, but not all sister chromatids and subsequent spindle defects that include centriole separation. Cells with scattered chromosomes persist long-term in a mitotic state and eventually die or exit. Partial cohesion loss-associated scattering is observed in both transformed cells and in karyotypically normal human cells, albeit at lower penetrance. Suppressing microtubule dynamics reduces scattering, suggesting that cohesion at centromeres is unable to resist dynamic microtubule-dependent pulling forces on the kinetochores. Consistent with this view, strengthening cohesion by inhibiting the two pathways responsible for its removal significantly inhibits scattering. These results establish that chromosome scattering due to uncoordinated partial loss of chromatid cohesion is a common outcome following extended arrest with bioriented chromosomes in human cells. These findings have important implications for analysis of mitotic phenotypes in human cells and for development of anti-mitotic chemotherapeutic approaches in the treatment of cancer
    • …
    corecore