74 research outputs found

    Inflamm-aging of the stem cell niche: Breast cancer as a paradigmatic example: Breakdown of the multi-shell cytokine network fuels cancer in aged people.

    Get PDF
    Inflamm-aging is a relatively new terminology used to describe the age-related increase in the systemic pro-inflammatory status of humans. Here, we represent inflamm-aging as a breakdown in the multi-shell cytokine network, in which stem cells and stromal fibroblasts (referred to as the stem cell niche) become pro-inflammatory cytokine over-expressing cells due to the accumulation of DNA damage. Inflamm-aging self-propagates owing to the capability of pro-inflammatory cytokines to ignite the DNA-damage response in other cells surrounding DNA-damaged cells. Macrophages, the major cellular player in inflamm-aging, amplify the phenomenon, by broadcasting pro-inflammatory signals at both local and systemic levels. On the basis of this, we propose that inflamm-aging is a major contributor to the increase in cancer incidence and progression in aged people. Breast cancer will be presented as a paradigmatic example for this relationship

    HPV DNA Associates With Breast Cancer Malignancy and It Is Transferred to Breast Cancer Stromal Cells by Extracellular Vesicles

    Get PDF
    A causal link between Human Papillomavirus (HPV) and breast cancer (BC) remains controversial. In spite of this, the observation that HPV DNA is over-represented in the Triple Negative (TN) BC has been reported. Here we remark the high prevalence of HPV DNA (44.4%) in aggressive BC subtypes (TN and HER2+) in a population of 273 Italian women and we convey the presence of HPV DNA in the epithelial and stromal compartments by in situ hybridization. As previously reported, we also found that serum derived-extracellular vesicles (EVs) from BC affected patients contain HPV DNA. Interestingly, in one TNBC patient, the same HPV DNA type was detected in the serum-derived EVs, cervical and BC tissue samples. Then, we report that HPV DNA can be transferred by EVs to recipient BC stromal cells that show an activated phenotype (e.g., CD44, IL6 expression) and an enhanced capability to sustain mammospheres (MS) formation. These data suggest that HPV DNA vehiculated by EVs is a potential trigger for BC niche aggressiveness

    Cell fate takes a slug in BRCA1-associated breast cancer

    Get PDF
    Understanding why BRCA1 mutation carriers have a predilection for developing clinically aggressive basal-like breast tumors could inform the development of targeted treatment or prevention strategies. Analysis of both mouse and human mammary epithelial cells has identified a role for BRCA1 in orchestrating differentiation. The ability to isolate discrete epithelial subpopulations from mammary tissue has recently directed attention to luminal progenitor cells - the descendants of mammary stem cells - as the likely 'cells-of-origin' in BRCA1-associated breast cancer. A new publication has confirmed the importance of aberrant luminal cells as key culprits and provided insights on how BRCA1 haploinsufficiency biases luminal cells toward a basal-like fate through aberrant expression of the transcription factor SLUG

    Glutathione transferase-A2 S112T polymorphism predicts survival, transplant-related mortality, busulfan and bilirubin blood levels after allogeneic stem cell transplantation

    Get PDF
    Busulfan liver metabolism depends on glutathione, a crucial mediator of cellular and systemic stress. Here we investigated 40 polymorphisms at 27 loci involved in hepatic glutathione homeostasis, with the aim of testing their impact on the clinical outcome of 185 busulfan-conditioned allogeneic transplants. GSTA2 S112T serine allele homozygosity is an independent prognostic factor for poorer survival (RR=2.388), for increased any time- and 100-day transplant-related mortality (RR=4.912 and RR=5.185, respectively). The genotype also predicts a wider busulfan area under the concentration-time curve (1214.36 \ub1 570.06 vs. 838.10 \ub1 282.40 mMol*min) and higher post-transplant bilirubin serum levels (3.280 \ub1 0.422 vs. 1.874+0.197 mg/dL). In vitro, busulfan elicits pro-inflammatory activation (increased NF-KappaB activity and interleukin-8 expression) in human hepatoma cells. At the same time, the drug down-regulates a variety of genes involved in bilirubin liver clearance: constitutive androstane receptor, multidrug resistance-associated protein, solute carrier organic anion transporters, and even GSTA2. It is worthy of note that GSTA2 also acts as an intra-hepatic bilirubin binding protein. These data underline the prognostic value of GSTA2 genetic variability in busulfan-conditioned allotransplants and suggest a patho-physiological model in which busulfan-induced inflammation leads to the impairment of post-transplant bilirubin metabolis

    Genomic stability, anti-inflammatory phenotype, and up-regulation of the RNAseH2 in cells from centenarians

    Get PDF
    Current literature agrees on the notion that efficient DNA repair favors longevity across evolution. The DNA damage response machinery activates inflammation and type I interferon signaling. Both pathways play an acknowledged role in the pathogenesis of a variety of age-related diseases and are expected to be detrimental for human longevity. Here, we report on the anti-inflammatory molecular make-up of centenarian's fibroblasts (low levels of IL-6, type 1 interferon beta, and pro-inflammatory microRNAs), which is coupled with low level of DNA damage (measured by comet assay and histone-2AX activation) and preserved telomere length. In the same cells, high levels of the RNAseH2C enzyme subunit and low amounts of RNAseH2 substrates, i.e. cytoplasmic RNA:DNA hybrids are present. Moreover, RNAseH2C locus is hypo-methylated and RNAseH2C knock-down up-regulates IL-6 and type 1 interferon beta in centenarian's fibroblasts. Interestingly, RNAseH2C locus is hyper-methylated in vitro senescent cells and in tissues from atherosclerotic plaques and breast tumors. Finally, extracellular vesicles from centenarian's cells up-regulate RNAseH2C expression and dampen the pro-inflammatory phenotype of fibroblasts, myeloid, and cancer cells. These data suggest that centenarians are endowed with restrained DNA damage-induced inflammatory response, that may facilitate their escape from the deleterious effects of age-related chronic inflammation

    SLUG/SNAI2 and Tumor Necrosis Factor Generate Breast Cells With CD44+/CD24- Phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer cells with CD44+/CD24- cell surface marker expression profile are proposed as cancer stem cells (CSCs). Normal breast epithelial cells that are CD44+/CD24- express higher levels of stem/progenitor cell associated genes. We, amongst others, have shown that cancer cells that have undergone epithelial to mesenchymal transition (EMT) display the CD44+/CD24- phenotype. However, whether all genes that induce EMT confer the CD44+/CD24- phenotype is unknown. We hypothesized that only a subset of genes associated with EMT generates CD44+/CD24- cells.</p> <p>Methods</p> <p>MCF-10A breast epithelial cells, a subpopulation of which spontaneously acquire the CD44+/CD24- phenotype, were used to identify genes that are differentially expressed in CD44+/CD24- and CD44-/CD24+ cells. Ingenuity pathway analysis was performed to identify signaling networks that linked differentially expressed genes. Two EMT-associated genes elevated in CD44+/CD24- cells, SLUG and Gli-2, were overexpressed in the CD44-/CD24+ subpopulation of MCF-10A cells and MCF-7 cells, which are CD44-/CD24+. Flow cytometry and mammosphere assays were used to assess cell surface markers and stem cell-like properties, respectively.</p> <p>Results</p> <p>Two thousand thirty five genes were differentially expressed (p < 0.001, fold change β‰₯ 2) between the CD44+/CD24- and CD44-/CD24+ subpopulations of MCF-10A. Thirty-two EMT-associated genes including SLUG, Gli-2, ZEB-1, and ZEB-2 were expressed at higher levels in CD44+/CD24- cells. These EMT-associated genes participate in signaling networks comprising TGFΞ², NF-ΞΊB, and human chorionic gonadotropin. Treatment with tumor necrosis factor (TNF), which induces NF-ΞΊB and represses E-cadherin, or overexpression of SLUG in CD44-/CD24+ MCF-10A cells, gave rise to a subpopulation of CD44+/CD24- cells. Overexpression of constitutively active p65 subunit of NF-ΞΊB in MCF-10A resulted in a dramatic shift to the CD44+/CD24+ phenotype. SLUG overexpression in MCF-7 cells generated CD44+/CD24+ cells with enhanced mammosphere forming ability. In contrast, Gli-2 failed to alter CD44 and CD24 expression.</p> <p>Conclusions</p> <p>EMT-mediated generation of CD44+/CD24- or CD44+/CD24+ cells depends on the genes that induce or are associated with EMT. Our studies reveal a role for TNF in altering the phenotype of breast CSC. Additionally, the CD44+/CD24+ phenotype, in the context of SLUG overexpression, can be associated with breast CSC "stemness" behavior based on mammosphere forming ability.</p

    Disulfiram modulated ROS–MAPK and NFΞΊB pathways and targeted breast cancer cells with cancer stem cell-like properties

    Get PDF
    BACKGROUND: Previous studies indicate that disulfiram (DS), an anti-alcoholism drug, is cytotoxic to cancer cell lines and reverses anticancer drug resistance. Cancer stem cells (CSCs) are the major cause of chemoresistance leading to the failure of cancer chemotherapy. This study intended to examine the effect of DS on breast cancer stem cells (BCSCs). METHODS: The effect of DS on BC cell lines and BCSCs was determined by MTT, western blot, CSCs culture and CSCs marker analysis. RESULTS: Disulfiram was highly toxic to BC cell lines in vitro in a copper (Cu)-dependent manner. In Cu-containing medium (1 mu M), the IC50 concentrations of DS in BC cell lines were 200-500 nM. Disulfiram/copper significantly enhanced (3.7-15.5-fold) cytotoxicity of paclitaxel (PAC). Combination index isobologram analysis demonstrated a synergistic effect between DS/Cu and PAC. The increased Bax and Bcl2 protein expression ratio indicated that intrinsic apoptotic pathway may be involved in DS/Cu-induced apoptosis. Clonogenic assay showed DS/Cu-inhibited clonogenicity of BC cells. Mammosphere formation and the ALDH1(+VE) and CD24(Low)/CD44(High) CSCs population in mammospheres were significantly inhibited by exposure to DS/Cu for 24 h. Disulfiram/copper induced reactive oxygen species (ROS) generation and activated its downstream apoptosis-related cJun N-terminal kinase and p38 MAPK pathways. Meanwhile, the constitutive NF kappa B activity in BC cell lines was inhibited by DS/Cu. CONCLUSION: Disulfiram/copper inhibited BCSCs and enhanced cytotoxicity of PAC in BC cell lines. This may be caused by simultaneous induction of ROS and inhibition of NF kappa B. British Journal of Cancer (2011) 104, 1564-1574. doi: 10.1038/bjc.2011.126 www.bjcancer.com Published online 12 April 2011 (C) 2011 Cancer Research U

    NEDD9 Is a Positive Regulator of Epithelial-Mesenchymal Transition and Promotes Invasion in Aggressive Breast Cancer

    Get PDF
    Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. The latest studies revealed that aggressive breast cancer, especially the triple-negative breast cancer (TNBC) subtype was frequently associated with apparent EMT, but the mechanisms are still unclear. NEDD9/HEF1/Cas-L is a member of the Cas protein family and was identified as a metastasis marker in multiple cancer types. In this study, we wished to discern the role of NEDD9 in breast cancer progression and to investigate the molecular mechanism by which NEDD9 regulates EMT and promotes invasion in triple-negative breast cancer. We showed that expression of NEDD9 was frequently upregulated in TNBC cell lines, and in aggressive breast tumors, especially in TNBC subtype. Knockdown of endogenous NEDD9 reduced the migration, invasion and proliferation of TNBC cells. Moreover, ectopic overexpression of NEDD9 in mammary epithelial cells led to a string of events including the trigger of EMT, activation of ERK signaling, increase of several EMT-inducing transcription factors and promotion of their interactions with the E-cadherin promoter. Data presented in this report contribute to the understanding of the mechanisms by which NEDD9 promotes EMT, and provide useful clues to the evaluation of the potential of NEDD9 as a responsive molecular target for TNBC chemotherapy
    • …
    corecore