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Stem Cell Transplantation

Introduction

Hematopoietic stem cell transplantation (HSCT) is a cura-
tive procedure for a variety of hematologic diseases.1

Transplant-related mortality (TRM) after HSCT depends
mainly on graft-versus-host disease (GVHD), infections and
preparative regimen toxicity. The assessment of polymor-
phisms at major histocompatibility complex (MHC) loci has
long been proven to be crucial for successful allogeneic
HSCT.2 Polymorphisms at non-MHC loci have also been
associated with the HSCT outcome.3,4 Much attention has
been paid to the relationship between genetic variation at
innate immunity loci and GVHD.5 Until now, studies on
genetic polymorphisms on HSCT have generated contrasting
data, likely due to insufficient sample size, selection biases,
patient and treatment heterogeneity.2

Hematopoietic stem cell transplantation is a systemic
stress: the achievement of a favorable HSCT outcome is
achieved via the successful functioning of multiple stress
response systems, and is likely to be affected by genetic vari-
ability over a large array of loci.3

Busulfan, a bi-functional alkylating agent, is an alternative to
total body irradiation, and it is one of the most widely used
drugs in allogeneic HSCT conditioning regimen.1 Busulfan is
used in association with cyclophosphamide1 and more recently
with fludarabine.6 Systemic exposure to the drug is an impor-

tant parameter for monitoring therapeutic efficacy.7,8 Large
inter-individual variability in busulfan pharmacokinetics has
been observed:9 the therapeutic window of busulfan, expressed
as area under the concentration-time curve (AUC), ranges from
900 to 1500 mMol*min. AUC levels lower than 900 mMol*min
correlate with disease relapse and graft failure, while values
higher than 1500 mMol*min are associated with extra-hemato-
logic hepatic toxicity.10,11 The clearance of the drug occurs in the
liver by direct conjugation with glutathione (GSH), as well as
via enzymatic GSH conjugation by glutathione-S-
transferases12,13 (GST). Liver GST activity, which is mainly due
to GSTA1 and GSTA2 iso-enzymes, correlates with busulfan
elimination.14 Depletion of liver GSH, as a consequence of
busulfan conjugation, impairs the metabolism of other drugs
such as cyclophosphamide.15 Plasma GST activity and GSH
level associate with the variability in busulfan clearance.14,16

In this paper, 40 polymorphisms at 27 loci involved in
hepatic glutathione balance17 were studied in a total of 185
patients who underwent allogeneic HSCT from 2005 to 2009,
after a busulfan-based preparative regimen (busulfan cohort).
The impact of such loci was tested on overall survival, TRM,
busulfan AUC and serum liver function tests.18 The same
polymorphisms were also tested on 146 consecutive patients
not receiving busulfan in the preparative regimen, concomi-
tantly undergoing transplantation at the same Institution
(comparator cohort).
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Busulfan liver metabolism depends on glutathione, a crucial mediator of cellular and systemic stress. Here we
investigated 40 polymorphisms at 27 loci involved in hepatic glutathione homeostasis, with the aim of testing their
impact on the clinical outcome of 185 busulfan-conditioned allogeneic transplants. GSTA2 S112T serine allele
homozygosity is an independent prognostic factor for poorer survival (RR=2.388), for increased any time- and 100-
day transplant-related mortality (RR=4.912 and RR=5.185, respectively). The genotype also predicts a wider busul-
fan area under the concentration-time curve (1214.36±570.06 vs. 838.10±282.40 mMol*min) and higher post-trans-
plant bilirubin serum levels (3.280±0.422 vs. 1.874+0.197 mg/dL). In vitro, busulfan elicits pro-inflammatory activa-
tion (increased NF-KappaB activity and interleukin-8 expression) in human hepatoma cells. At the same time, the
drug down-regulates a variety of genes involved in bilirubin liver clearance: constitutive androstane receptor, mul-
tidrug resistance-associated protein, solute carrier organic anion transporters, and even GSTA2. It is worthy of note
that GSTA2 also acts as an intra-hepatic bilirubin binding protein. These data underline the prognostic value of
GSTA2 genetic variability in busulfan-conditioned allotransplants and suggest a patho-physiological model in
which busulfan-induced inflammation leads to the impairment of post-transplant bilirubin metabolism.
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Methods

Patients
The busulfan cohort was made up of 185 consecutive patients

(Table 1) who were transplanted at the Institute of Hematology “L.
and A. Seràgnoli”, University of Bologna, Italy, between 2005 and
2009, using busulfan as conditioning. Myeloablative conditioning
(0.8 mg/kg intravenous busulfan, 2-h infusions, four times a day,
four consecutive days plus cyclophosphamide, 120 mg/kg) was
administered to 167 patients. Lower (6 patients) or standard busul-
fan doses plus fludarabine 160 mg/m2 (12 patients) were also used.
Ideal body weight (IBW) was calculated as 0.91 x (height in cm –
152) +50 (for men) or +45 (for women). IBW was used when
lower than the actual weight and when body mass index (BMI)
was lower/equal to 27. When BMI was greater than 27, IBW was
adjusted as IBW+ 0.25 x (actual weight – IBW). 
A total of 146 consecutive patients (comparator cohort, Table 1)

transplanted at the same Institution were also studied. In this
cohort, the myeloablative conditioning was cyclophosphamide
(120 mg/kg) plus unfractionated total body irradiation (8 Gy). 
Graft-versus-host disease prophylaxis was cyclosporin-A and

short-term methotrexate plus rabbit anti-thymocyte globulin (3-5
mg/kg/die, Fresenius, Bad-Homburg, Germany), from Day -6 to
Day -2. Patients with acute leukemia in first complete remission or
with chronic myeloid leukemia in first chronic phase were classi-
fied as being in early phase at transplant; the remaining patients
were classified as being in advanced phase. Written informed con-

sent for the study was obtained from all patients. The study was
approved by the Ethics Committee of Saint Orsola-Malpighi
University Hospital, Bologna, Italy.

Busulfan pharmacokinetics
Plasma busulfan kinetics (64 patients) was assessed before

administration, and at 15, 60, 120, 180, 240 min, after dose 9 (Day
3).19 Plasma busulfan concentrations were determined by HPLC
(Perkin Elmer, USA).20 AUC was calculated by Kinetica software
(Thermo Scientific, Waltham, MA, USA). 

Genetic analysis
Forty polymorphisms at 27 loci were analyzed (Online

Supplementary Tables S1 and S2). Thirty-six were genotyped using
MassARRAY high-throughput DNA analysis (Sequenom Inc., San
Diego, CA, US). Three (CBS rs72958776-68bpIns, GST-T1 and
GST-M1 null alleles) were genotyped by PCR; GPX1 SNP
rs1050450 was assessed by tetra-ARMS PCR. 

In vitro study
Human hepatoma HepG2 cells were grown in DMEM 10% FBS

(Life Technologies, Carlsbad, CA, USA). GSTA2-specific siRNA
and GC-matched control siRNA were transfected by
Lipofectamine 2000 (Life Technologies) to HepG2 cells (104/3 cm2

well, 72 h). Cells were exposed to busulafan (2.5-400 uM, 96 h)
and cell death was assessed by Trypan blue.

Real-time PCR
mRNA was extracted by Trizol (Life Technologies). Real-time

PCR primers and probes for GSTA2, interleukin-8 (IL8), constitu-
tive androstane receptor (CAR), multidrug resistance-associated
protein ABCC2, solute carrier organic anion transporters
SLCO1B1 and SLCO1B3 and β-glucuronidase mRNAs were from
Life Technologies. The amount of the target genes was calculated
by the 2-ddcT method.

Luciferase assay
NF-kappaB luciferase21 reporter activity was assessed in HepG2

(1 mg/well, 24 h) by Dual-Luciferase® Reporter Assay System
(Promega, Madison, WI, USA). 

Statistical analysis
Cox proportional model and general linear model (GLM) for

repeated measures were employed. P=0.00125 was considered
significant in multiple comparisons. The analyses were performed
by PASW18 (SPSS-IBM, NY). Haplotypes were estimated by
Thesias (http://genecanvas.ecgene.net).22

Results

GSTA2 S112T locus impacts TRM and survival, but 
not GVHD and relapse, in patients receiving busulfan

Clinical characteristics of transplanted patients are
reported in Table 1. Multivariate Cox regression was per-
formed using the five clinical variables included in the
EBMT score (age, sex mismatch, disease phase, type of
donor, interval diagnosis-transplant) plus intensity of con-
ditioning. The analysis revealed that disease phase at
transplant (advanced vs. early) is a significant prognostic
factor for both TRM (advanced vs. early, RR=2.689,
95%CI: 1.078-6.703; P=0.034) and overall survival (OS,
advanced vs. early, RR=3.975, 95%CI: 2.262-6.986;
P=1.61*10-6). All the genotypes investigated (Online
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Table 1. Clinical characteristics of patients.
Busulfan cohort Comparator cohort

(n=185) (n=146)
median range median range

Age (years) 41 (18-59) 43 (16-61)
Interval diagnosis-transplant 18 (2-128) 20 (2-240)
(months)
Follow up (months) 31 (1-238.7) 38.9 (1-239.2)
Years of transplant na§ (2005-2009) na§ (2005-2009)

N (%) N (%)

Gender  (males/females) 110/75 (59.4/60.6) 85/59 (58.2/61.8) 
Type of donor  97/88 (52.4/47.6) 65/81 (44.5/55.5)
(sibling/unrelated)
Sex mismatch (male 39 (21.1) 32 (21.9)
recipient/female donor)
Early phase at transplant* 85 (45.9) 47 (32.2)
Myeloablative conditioning 179 (96.8) 61 (41.8)
regimen
Anti-thymocyte globulin  126 (68.1) 99 (67.8)
Diagnosis
Acute myeloid leukemia 90 (48.7) 29 (19.9)
Acute lymphoblastic leukemia 35 (18.9) 23 (15.8)
Myelodysplastic syndromes 8 (4.3) 4 (2.7)
Multiple myeloma 9 (4.9) 28 (19.2)
Lymphomas 10 (5.4) 50 (34.2)
Chronic myeloid leukemia 27 (14.6) 10 (6.8)
Other 6 (3.2) 2 (1.4)
Source of HSC 
Bone marrow 78 (42.2) 68 (46.6)
Peripheral blood 101 (54.6) 76 (52.1)
Cord blood 6 (3.2) 2 (1.3)

§Not applicable; *early phase at transplant: acute leukemia in 1st complete remission or  myeloid
leukemia in1st chronic phase.



Supplementary Tables S1 and S2) were singularly tested in a
Cox model implementing clinical variables as covariates
(Online Supplementary Table S3). The serine (ser) to threo-
nine (thr) amino acid substitution at GSTA2 Codon 112
(S112T) was the only locus which remained significant for
TRM after adjustment for multiple comparisons (n=40;
P=0.001), while the effect on OS was only marginally sig-
nificant (P=0.005) (Online Supplementary Table S3). GSTA2
is a glutathione transferase, which is expressed in the liver
and metabolizes busulfan in cooperation with GSTA1.13
GSTA2 S112T genotypes were then recoded as dichoto-
mous variables, namely serine homozygotes (ser/ser,
n=38) and threonine carriers (thr+, n=142). We observed
that GSTA2 S112T locus was predictive of OS (ser/ser vs.
thr+, RR=2.388, 95%CI: 1.407-4.502; P=0.001), TRM
(ser/ser vs. thr+, RR=4.912, 95%CI: 2.083-11.563;
P=0.0002) and 100-day TRM (ser/ser vs. thr+, RR=5.185,
95%CI: 1.971-13.641; P=0.001) (Table 2). The Kaplan and
Meyer plot showed the poorer survival and higher TRM
of GSTA2 S112T ser/ser patients (Figure 1A-C).
Furthermore, because deaths mostly occurred in the first
post-transplant weeks, we also calculated 100-day TRM
(Figure 1C). In line with expectations, the analysis of caus-
es of 100-day TRM death revealed a significantly higher
number of deaths due to conditioning-related toxicity23 in
GSTA2 S112T ser/ser patients (6 of 9, 66.6%), compared
to thr+ (2 of 12, 16.6%; P=0.032, Fisher exact test) (Figure
1D). 
Interestingly, GSTA2 S112T locus did not significantly

affect either TRM nor OS in the comparator cohort (Online
Supplementary Table S3), even when the analysis was per-
formed separately on the subset of patients receiving mye-
loablative conditioning regimen (ser/ser, n=9 vs. thr+,
n=52, OS: RR=0.361 95%CI: 0.115-2.201; P=0.361; TRM:
RR=0.558 95%CI: 0.070-4.412; P=0.580) or reduced-inten-
sity conditioning regimen (ser/ser, n=21 vs. thr+, n=64;
OS: RR=0.891 95%CI: 0.493-2.237, P=0.891; TRM:
RR=0.797 95%CI: 0.245-2.593; P=0.706). 
We also observed a weak association between TRM and

other polymorphisms located at the GSTA1-GSTA2
genomic region, namely GSTA1 SNPs (rs1051775,
rs3957356, rs4715332) (Online Supplementary Table S3). As

previously reported,24,25 owing to the significant linkage
disequilibrium among polymorphisms at GSTA2 and
GSTA1 loci (Online Supplementary Table S4), the two loci
haplotype frequency distribution of GSTA2 S112T and
GSTA1 loci was estimated: the ser allele was highly asso-
ciated with the so-called GSTA1*B rs3957356-rs4715332
functional haplotype25,26 (Online Supplementary Table S5).
Nevertheless, survival analysis of GSTA2 S112T-
GSTA1*A/B haplotypes reinforced the conclusion that
GSTA1*B haplotype does not significantly modify the
impact of the GSTA2 S112T locus on TRM and survival in
our case set (Table 3 and Online Supplementary Table S6).
Moreover, GSTA2 S112T locus does not affect relapse
rate, which was instead associated with the phase at
transplant (Online Supplementary Table S7). Furthermore,
incidence of aGVHD grades III-IV and hepatic acute
GVHD stages III-IV were similar between GSTA2 S112T
ser/ser and thr+ patients (18.9% vs. 19.1%; P=0.591 and
5.4% vs. 5.6%; P=0.472, respectively).

Impact of the GSTA2 S112T locus on busulfan-AUC 
and the post transplant serum bilirubin level
GSTA2 S112T polymorphism is not located in the

enzyme catalytic site but it has been supposed to affect
protein stability.27 Busulfan is almost exclusively metabo-
lized in the liver, where GSTA2 is expressed.15,28 Anova
analysis using age, gender, BMI and source of HSC as
covariates, revealed higher systemic exposure to busulfan
(Day -3 AUC) in GSTA2 S112T ser/ser patients compared
to thr+ (1214.36+570.06 vs. 838.10+282.40 mMol*min,
F=9.185; P=0.001) (Figure 2A). Notably, BMI was not
affected by S112T GSTA2 polymorphism, given that
ser/ser patients show the same BMI distribution as thr+
patients, in each gender group (males: 27.70+2.62 vs.
26.5+3.85, females: 21.13+1.51 vs. 24,21+4.55; P=0.85,
GLM analysis). Moreover, there was no difference in
busulfan AUC between patients with BMI lower
than/equal to 27 versus those with BMI greater than 27
(mean values: 871.00+343.09 vs. 903.96+355.21
mMol*min; P=0.29, adjusted for gender).
Because glutathione depletion causes liver damage,18 we

then evaluated the association between GSTA2 S112T
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Table 2. Multivariate Cox analysis of overall survival (OS), transplant-related mortality (TRM) and 100-day TRM.
OS TRM 100-day TRM

Variables RR [95% CI] P RR [95% CI] P RR [95% CI] P

Age 1.004 [0.980-1.029] 0.746 1.040 [0.996-1.085] 0.074 1.030 [0.982-1.080] 0.226
Interval diagnosis- 0.995 [0.981-1.010] 0.525 1.004 [0.983-1.026] 0.716 1.003 [0.980-1.026] 0.801
transplant
Sex donor/recipient 1.579 [0.834-2.989] 0.161 1.443 [0.475-4.384] 0.518 0.432 [0.096-1.938] 0.273
(female/male vs. others)
Type of donor (unrelated 1.467 [0.871-2.470] 0.150 1.173 [0.500-2.571] 0.714 1.010 [0.388-2.631] 0.983
vs. sibling)
Conditioning regimen 0.216 [0.029-1.597] 0.133 0.522 [0.068-4.020] 0.533 1.665 [0.210-13.172] 0.629
(myeloablative vs.
reduced intensity)
Phase at transplant 4.083 [2.295-7.265] 0.0001 3.547 [1.331-9.452] 0.011 6.269 [1.734-22.659] 0.005
(advanced vs. early)
GSTA2 S112T (ser/ser vs. 2.388 [1.407-4.052] 0.001 4.912 [2.083-11.583] 0.0002 5.185 [1.971-13.641] 0.001
thr+)

The effect of GSTA2 S112T  locus remained significant in multivariate analysis even when patients who received reduced intensity conditioning regimen (n=6) were removed: OS,
RR=2.183 95%CI: 1.283-3.716, P=0.004; TRM; RR=3.821 95%CI: 1.645-9.018; P=0.002.



SNP and liver function tests: total bilirubin, alanine
transaminase, aspartate transaminase, cholinesterase,
alkaline phosphatase and gamma-glutamyl transferase
were examined weekly from the day of conditioning, up
to Day 35 post transplant. Higher unfractioned plasma
bilirubin levels for the first five weeks after transplant
were found in GSTA2 S122T ser/ser patients compared to
thr+ (GLM-estimated marginal means: 3.280+0.422 vs.
1.874+0.197 mg/dL, F=8.728; P=0.004) (Figure 2B).
Interestingly, no association was found between GSTA2
S112T locus and all the other liver functional tests (Online
Supplementary Table S8).

Exposure of human hepatoma cells to busulfan 
induces a pro-inflammatory response and reduces 
the expression of genes involved in bilirubin clearance
The data above suggest that, in patients receiving busul-

fan, the difference in post-transplant plasma bilirubin level
between ser/ser versus thr+ patients is not correlated with

the extent of liver necrosis. In this regard, negligible cell
death was observed in human hepatoma cells HepG2
exposed to busulfan at concentrations comparable to
those occurring in vivo, even when such cells were
knocked down by a GSTA2-specific short interfering RNA
oligonucleotide (siGSTA2) (Figure 3A). In HepG2 cells,
busulfan administration elicited the upregulation of NF-
kappaB, the master controller of the inflammatory
response29 (Figure 3B). Moreover, siGSTA2 transfected
HepG2 cells disclosed the upregulation of NF-kappaB
activity and of the pro-inflammatory cytokine interleukin-
8, compared to controls (Figure 3C). 
At cellular and systemic levels, inflammation reduces

the expression of a variety of genes involved in liver biliru-
bin metabolism,29,30 namely constitutive androstane recep-
tor31 (CAR), multidrug resistance associated protein
MRP2/ABCC232 and solute organic carriers SLCO1B1 and
SCLO1B3.32 We also included GSTA2 in this gene set,
since it is the intra-hepatic bilirubin ligandin, a function
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Figure 1. GSTA2 S112T locus
affects OS and TRM in patients
prepared with busulfan. (A)
Kaplan-Meyer analysis of OS, (B)
TRM at any time and (C), 100-day
TRM according to GSTA2 S112T
genotypes (ser/ser, n=38; thr+,
n=142); P values refer to log rank
test; (D) pie-chart representation
of 100-day TRM causes of death
in ser/ser (n=9) and thr+ (n=12)
patients. In particular, in serine
homozygotes the organ toxicity
was: liver (2 patients), liver and
renal  (1 patient), gut  (2
patients), heart (1 patient). In
threonine carriers the organ
involvement was liver (1 patient),
heart (1 patient).

Table 3. Multivariate Cox analysis of TRM and OS according to GSTA2 S112T- GSTA1*A/B haplotypes. 
Haplotype TRM OS

RR [95% CI] P RR [95% CI] P

Thr- GSTA1*A 1 / / 1 / /
Thr- GSTA1*B 1.744 [0.533-5.695] 0.356 1.5428 [0.733-3.243] 0.252
Ser- GSTA1*A 3.081 [1.281-7.431] 0.011 2.3663 [1.348-4.145] 0.002
Ser- GSTA1*B 1.889 [1.046-3.388] 0.034 1.6771 [1.116-2.427] 0.005

Survival TRM
P=0.002 P=0.003

P=0.032
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which is independent of its enzymatic activity.33 We found
that exposure of HepG2 cells to non-cytotoxic concentra-
tions of busulfan elicited a dramatic decrease in GSTA2,
CAR, ABCC2, SLCO1B1 and SCLO1B3 expression (Figure
3D). Notably, SLCO1B1 and SCLO1B3 became almost
undetectable upon busulfan exposure. Moreover, in
siGSTA2-transfected HepG2, we observed a further
decrease in CAR and ABCC2 expression compared to con-
trols (Figure 3E). These data led us to argue that the pro-
inflammatory activation of busulfan-exposed hepatocytes
causes the downregulation of GSTA2 and of bilirubin-
metabolizing enzymes (Figure 3F). This metabolic reshap-
ing is expected to impair bilirubin clearance in the post-
transplant phase and to be dependent on the individual
genetic landscape.

Discussion

In this paper, we report that the GSTA2 S112T poly-
morphism affects survival of HSCT patients receiving a
busulfan-based conditioning regimen, serine allele
homozygotes being more prone to higher transplant-
related and overall mortality compared to threonine allele
carriers. The frequency of GSTA2 S112T serine homozy-
gotes reported here (21%) is close to that found in the
Italian population34 (19.8%) and in Caucasians24 (18.5%),
suggesting that the locus does not represent a risk factor
for developing hematopoietic malignancies. Interestingly,
the association of GSTA2 S112T with TRM and survival
is not significant in the cohort of HSCT patients not
receiving busulfan (comparator cohort). Therefore, the
data suggest that the polymorphism changes the individ-
ual response to the drug. In support of this hypothesis,
we report that GSTA2 S112T serine homozygotes show
higher busulfan plasma levels compared to threonine car-
riers, indicating that such a group of patients displays a
reduced busulfan clearance capability. In fact, busulfan
metabolism mainly involves its conjugation with GSH in
the liver, via alpha class cytosolic GST.12,13 Busulfan
administration depletes the content of hepatocyte GSH,
the co-factor of GST enzymes.18,35 Plasma GSH correlates
with busulfan clearance capacity16 and hepatic GST activ-

ity negatively correlates with plasma busulfan and posi-
tively associates with its clearance.14 In line with these
data, the association between high busulfan plasma levels
and post-transplant mortality has already been
described.7,8,10 Consistent with this, we found that the
proportion of deaths due to drug toxicity in GSTA2
S112T serine homozygotes is higher than in other
patients. Hence, the GSTA2 S112T locus may be regarded
as a reliable predictor for individual susceptibility to the
adverse effects of busulfan. It might also be argued that
GSTA2 S112T locus can be used to tailor busulfan
dosages. However, our series is based on the standard
association of busulfan and cyclophosphamide, the
GSTA2 S112T locus should be assessed in patients receiv-
ing other busulfan-based drugs combinations.
Our data do not confirm the previously reported associ-

ation between busulfan AUC and GVHD.9 Insufficient
power or heterogeneity of patients’ GVHD risk (i.e. type
of donor, source of HSC, HLA distance) may explain these
findings.
The GSTA2 S112T amino acid change is not located at

the enzyme catalytic site.36 Moreover, serine and threo-
nine residues are both polar non-charged amino acids and
their reciprocal substitution is not expected to yield any
predictable change in the protein structure.36 Nevertheless,
in the liver, the GSTA2 S112T locus has been found to
impact the GSTA2 protein level and themostability.24,27
These data suggest that the GSTA2 S112T locus affects
the individual capability to metabolize busulfan, inde-
pendently of the alteration of GSTA2 enzyme activity.
GSTA2 and GSTA1 share 95% amino acid identity but

GSTA2 is endowed with lower busulfan-GSH conjugation
activity.13,28 The GSTA2 S112T locus is closely associated
with the functional (rs395376)-52bp GSTA1 polymor-
phism, which modifies the gene transcription rate.34
Consequently, the tight linkage disequilibrium among
GSTA1 and GSTA2 polymorphisms24,25,37 might explain the
functional association reported here. The GSTA1 promot-
er hosts functional *A and *B haplotypes:25,26,37 the
GSTA1*B haplotype has been associated with 4-fold
reduction of GSTA1 enzyme activity and higher busulfan
plasma concentration.8,26,37-39 Though the GSTA2 S112T ser-
ine allele is in linkages with the GSTA1 *B haplotype,24-26 it
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Figure 2. GSTA2 S112T locus
impacts serum bilirubin and
plasma busulfan levels. (A)
Busulfan AUC in patients
receiving busulfan according
to GSTA2 S112T genotypes
(ser/ser, n=8, thr+, n=56); P
values refer to multivariate
GLM adjusted for age, gen-
der, BMI and source of HSC.
(B) Bilirubin serum levels
according to GSTA2 S112T
genotypes (ser/ser, n=20,
thr+, n=99) from pre-trans-
plant to 35 days post-trans-
plant; P value is referred to
GLM Anova for repeated
measures, adjusted for age,
sex mismatch, interval from
diagnosis to transplant, inten-
sity of conditioning and dis-
ease phase at transplant. 
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Figure 3. Exposure to busulfan and GSTA2 knockdown induce a pro-inflammatory response and reduce the expression of CAR, ABCC2,
SLCO1B1 and SLCO1B3 in human hepatoma cells (HepG2). (A) Cell death analysis of HepG2 cells transfected with control (Ctr) or GSTA2 spe-
cific siRNA (siGSTA2) exposed to increasing busulfan concentrations; (B) NF-kappaB luciferase assay in HepG2 cells exposed to increasing
busulfan concentrations; (C) NF-kappaB luciferase assay and Interleukin-8 (IL-8) real-time PCR analysis in Ctr/siGSTA2 transfected HepG2
cells exposed to increasing busulfan concentrations; (D) real-time PCR analysis of GSTA2, CAR, ABCC2 SLCO1B1 and SLCO1B3 mRNA level
in Ctr/siGSTA2 transfected HepG2 cells exposed to increasing busulfan concentrations; (E) real-time PCR analysis of GSTA2, CAR and ABCC2
mRNA level in HepG2 cells exposed to increasing busulfan concentrations; (F) descriptive picture of the proposed mechanism: busulfan expo-
sure triggers hepatic inflammatory activation which associates with the downregulation of genes involved in bilirubin metabolism, namely
GSTA2, CAR, ABCC2, SLCO1B1, SCLO1B3. This phenomenon is amplified by decreased levels of GSTA2 and, speculatively, in serine
GSTA2S112T allele carriers.
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seems to be the sole cause for the results here obtained.
Even the GSTA2 thr-*B haplotype, which is expected to
combine the low activity of both isoenzymes,24,25 seems
not to impact patients’ survival. Intriguingly, the associa-
tion between the GSTA1*B haplotype and reduced busul-
fan clearance was observed with oral but not intravenous
administration.40,41 On the contrary, other authors failed to
find any association between GSTA1 polymorphisms and
busulfan metabolism.42,43 Nevertheless, our data support
the role of GSTA1-GSTA2 genomic region in the inter-
individual variability in busulfan metabolism.
Here we show that 35-day post-transplant serum biliru-

bin levels are increased in GSTA2 S112T serine homozy-
gotes patients receiving a preparative regimen containing
busulfan. Since GSTA2 S112T serine homozygotes do not
display significantly different alterations in other liver
function tests, we speculate that such patients might
undergo specific alterations of bilirubin clearance. In this
regard, busulfan is not hepatotoxic itself, at least within
the therapeutic concentration range.44 According to this,
we did not find cell death in human hepatoma cells
exposed to therapeutic concentrations of busulfan, even
upon siRNA-mediated GSTA2 knockdown. We observed
that busulfan triggers the pro-inflammatory activation of
human hepatoma cells. At cellular and systemic levels,29,30
inflammation has been linked to the downregulation of a
variety of genes involved in bilirubin metabolism. In par-
ticular, we show here that busulfan down-regulates: i)
CAR, the nuclear transcription factor for several liver
bilirubin clearance genes;32 ii) MRP2/ABCC2, a member of
the ATP-binding cassette family of membrane transporters
localized at the apical border of hepatocytes, which is
involved in the transport of conjugated bilirubin and glu-
tathione trafficking to the bile;29 iii) SLCO1B1 and
SLCO1B3, trans-membrane transporters at hepatocytes’
baso-lateral border, which control the uptake of conjugat-
ed and/or unconjugated serum bilirubin.32 Intriguingly,
busulfan also down-regulates GSTA2 which is part of the
bilirubin metabolism, owing to its ability to act as intra-

hepatocytic ligandin, which prevents the backflow of
hepatic bilirubin into blood circulation.31 In addition, we
found that the exposure of GSTA2 knockdown cells elicits
higher inflammatory activation and lower expression of
CAR and ABCC2 compared to Controls. Since it has been
previously reported that post-transplant interleukin-8
serum level is highly correlated with serum bilirubin,45 it
can be hypothesized that the pro-inflammatory status,
which develops in patients prepared with busulfan, might
be linked to the reduced clearance of unconjugated biliru-
bin, as well as to the increase in serum bilirubin. Given
this, these findings lead us to speculate that post trans-
plant hyper-bilirubinemia in GSTA2 S112T serine
homozygotes may be the consequence of their peculiar
liability to the development of busulfan-dependent pro-
inflammatory liver injury (Figure 3F). 
In conclusion, our data suggest that the GSTA2 S112T

polymorphism is predictive of transplant outcome in
patients receiving busulfan in the preparative regimen, at
least in association with cyclophosphamide. This was a
single center retrospective study and this analysis war-
rants validation by a prospective clinical study to gauge
the role of genotyping at GSTA S112T locus in the adjust-
ment of busulfan dosages.
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