1,971 research outputs found

    The optimal schedule for pulsar timing array observations

    Full text link
    In order to maximize the sensitivity of pulsar timing arrays to a stochastic gravitational wave background, we present computational techniques to optimize observing schedules. The techniques are applicable to both single and multi-telescope experiments. The observing schedule is optimized for each telescope by adjusting the observing time allocated to each pulsar while keeping the total amount of observing time constant. The optimized schedule depends on the timing noise characteristics of each individual pulsar as well as the performance of instrumentation. Several examples are given to illustrate the effects of different types of noise. A method to select the most suitable pulsars to be included in a pulsar timing array project is also presented.Comment: 16 pages, 6 figures, accepted by MNRA

    The beamformer and correlator for the Large European Array for Pulsars

    Get PDF
    The Large European Array for Pulsars combines Europe's largest radio telescopes to form a tied-array telescope that provides high signal-to-noise observations of millisecond pulsars (MSPs) with the objective to increase the sensitivity of detecting low-frequency gravitational waves. As part of this endeavor we have developed a software correlator and beamformer which enables the formation of a tied-array beam from the raw voltages from each of telescopes. We explain the concepts and techniques involved in the process of adding the raw voltages coherently. We further present the software processing pipeline that is specifically designed to deal with data from widely spaced, inhomogeneous radio telescopes and describe the steps involved in preparing, correlating and creating the tied-array beam. This includes polarization calibration, bandpass correction, frequency dependent phase correction, interference mitigation and pulsar gating. A link is provided where the software can be obtained.Comment: 10 pages, 6 figures, accepted for publication in Astronomy and Computin

    Supra-oscillatory critical temperature dependence of Nb-Ho bilayers

    Full text link
    We investigate the critical temperature Tc of a thin s-wave superconductor (Nb) proximity coupled to a helical rare earth ferromagnet (Ho). As a function of the Ho layer thickness, we observe multiple oscillations of Tc superimposed on a slow decay, that we attribute to the influence of the Ho on the Nb proximity effect. Because of Ho inhomogeneous magnetization, singlet and triplet pair correlations are present in the bilayers. We take both into consideration when solving the self consistent Bogoliubov-de Gennes equations, and we observe a reasonable agreement. We also observe non-trivial transitions into the superconducting state, the zero resistance state being attained after two successive transitions which appear to be associated with the magnetic structure of Ho.Comment: Main article: 5 pages, 4 figures; Supplementary materials: 4 pages, 5 figure

    Model-based asymptotically optimal dispersion measure correction for pulsar timing

    Full text link
    In order to reach the sensitivity required to detect gravitational waves, pulsar timing array experiments need to mitigate as much noise as possible in timing data. A dominant amount of noise is likely due to variations in the dispersion measure. To correct for such variations, we develop a statistical method inspired by the maximum likelihood estimator and optimal filtering. Our method consists of two major steps. First, the spectral index and amplitude of dispersion measure variations are measured via a time-domain spectral analysis. Second, the linear optimal filter is constructed based on the model parameters found in the first step, and is used to extract the dispersion measure variation waveforms. Compared to current existing methods, this method has better time resolution for the study of short timescale dispersion variations, and generally produces smaller errors in waveform estimations. This method can process irregularly sampled data without any interpolation because of its time-domain nature. Furthermore, it offers the possibility to interpolate or extrapolate the waveform estimation to regions where no data is available. Examples using simulated data sets are included for demonstration.Comment: 15 pages, 15 figures, submitted 15th Sept. 2013, accepted 2nd April 2014 by MNRAS. MNRAS, 201

    Improving Predictions for Helium Emission Lines

    Get PDF
    We have combined the detailed He I recombination model of Smits with the collisional transitions of Sawey & Berrington in order to produce new accurate helium emissivities that include the effects of collisional excitation from both the 2 (3)S and 2 (1) S levels. We present a grid of emissivities for a range of temperature and densities along with analytical fits and error estimates. Fits accurate to within 1% are given for the emissivities of the brightest lines over a restricted range for estimates of primordial helium abundance. We characterize the analysis uncertainties associated with uncertainties in temperature, density, fitting functions, and input atomic data. We estimate that atomic data uncertainties alone may limit abundance estimates to an accuracy of 1.5%; systematic errors may be greater than this. This analysis uncertainty must be incorporated when attempting to make high accuracy estimates of the helium abundance. For example, in recent determinations of the primordial helium abundance, uncertainties in the input atomic data have been neglected.Comment: ApJ, accepte

    Gravitational wave astronomy of single sources with a pulsar timing array

    Full text link
    Abbreviated: We investigate the potential of detecting the gravitational wave from individual binary black hole systems using pulsar timing arrays (PTAs) and calculate the accuracy for determining the GW properties. This is done in a consistent analysis, which at the same time accounts for the measurement of the pulsar distances via the timing parallax. We find that, at low redshift, a PTA is able to detect the nano-Hertz GW from super massive black hole binary systems with masses of \sim10^8 - 10^{10}\,M_{\sun} less than ∌105\sim10^5\,years before the final merger, and those with less than ∌103−104\sim10^3 - 10^4 years before merger may allow us to detect the evolution of binaries. We derive an analytical expression to describe the accuracy of a pulsar distance measurement via timing parallax. We consider five years of bi-weekly observations at a precision of 15\,ns for close-by (∌0.5−1\sim 0.5 - 1\,kpc) pulsars. Timing twenty pulsars would allow us to detect a GW source with an amplitude larger than 5×10−175\times 10^{-17}. We calculate the corresponding GW and binary orbital parameters and their measurement precision. The accuracy of measuring the binary orbital inclination angle, the sky position, and the GW frequency are calculated as functions of the GW amplitude. We note that the "pulsar term", which is commonly regarded as noise, is essential for obtaining an accurate measurement for the GW source location. We also show that utilizing the information encoded in the GW signal passing the Earth also increases the accuracy of pulsar distance measurements. If the gravitational wave is strong enough, one can achieve sub-parsec distance measurements for nearby pulsars with distance less than ∌0.5−1\sim 0.5 - 1\,kpc.Comment: 16 pages, 5 figure,, accepted by MNRA

    Radio Emission from GRO J1655-40 during the 1994 Jet Ejection Episodes

    Get PDF
    We report multifrequency radio observations of GRO J1655-40 obtained with the Australia Telescope Compact Array, the Molonglo Observatory Synthesis Telescope and the Hartebeesthoek Radio Astronomy Observatory at the time of the major hard X-ray and radio outbursts in 1994 August-September. The radio emission reached levels of the order of a few Jy and was found to be linearly polarized by up to 10%, indicating a synchrotron origin. The light curves are in good agreement with those measured with the VLA, but our closer time sampling has revealed two new short-lived events and significant deviations from a simple exponential decay. The polarization data show that the magnetic field is well ordered and aligned at right angles to the radio jets for most of the monitoring period. The time evolution of the polarization cannot be explained solely in terms of a simple synchrotron bubble model, and we invoke a hybrid `core-lobe' model with a core which contributes both synchrotron and free-free emission and `lobes' which are classical synchrotron emitters.Comment: 36 pages, 5 tables, 9 figures; accepted for publication in Ap

    The noise properties of 42 millisecond pulsars from the European Pulsar Timing Array and their impact on gravitational wave searches

    Get PDF
    The sensitivity of Pulsar Timing Arrays to gravitational waves depends on the noise present in the individual pulsar timing data. Noise may be either intrinsic or extrinsic to the pulsar. Intrinsic sources of noise will include rotational instabilities, for example. Extrinsic sources of noise include contributions from physical processes which are not sufficiently well modelled, for example, dispersion and scattering effects, analysis errors and instrumental instabilities. We present the results from a noise analysis for 42 millisecond pulsars (MSPs) observed with the European Pulsar Timing Array. For characterising the low-frequency, stochastic and achromatic noise component, or "timing noise", we employ two methods, based on Bayesian and frequentist statistics. For 25 MSPs, we achieve statistically significant measurements of their timing noise parameters and find that the two methods give consistent results. For the remaining 17 MSPs, we place upper limits on the timing noise amplitude at the 95% confidence level. We additionally place an upper limit on the contribution to the pulsar noise budget from errors in the reference terrestrial time standards (below 1%), and we find evidence for a noise component which is present only in the data of one of the four used telescopes. Finally, we estimate that the timing noise of individual pulsars reduces the sensitivity of this data set to an isotropic, stochastic GW background by a factor of >9.1 and by a factor of >2.3 for continuous GWs from resolvable, inspiralling supermassive black-hole binaries with circular orbits.Comment: Accepted for publication by the Monthly Notices of the Royal Astronomical Societ

    Roughness-induced critical phenomena in a turbulent flow

    Full text link
    I present empirical evidence that turbulent flows are closely analogous to critical phenomena, from a reanalysis of friction factor measurements in rough pipes. The data collapse found here corresponds to Widom scaling near critical points, and implies that a full understanding of turbulence requires explicit accounting for boundary roughness

    Pulsars with the Australian Square Kilometre Array Pathfinder

    Full text link
    The Australian Square Kilometre Array Pathfinder (ASKAP) is a 36-element array with a 30-square-degree field of view being built at the proposed SKA site in Western Australia. We are conducting a Design Study for pulsar observations with ASKAP, planning both timing and search observations. We provide an overview of the ASKAP telescope and an update on pulsar-related progress.Comment: To appear in proceedings of "Radio Pulsars: An astrophysical key to unlock the secrets of the Universe
    • 

    corecore