1,284 research outputs found

    Axisymmetric core collapse simulations using characteristic numerical relativity

    Get PDF
    We present results from axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the unambiguous extraction of gravitational waves at future null infinity without any approximation, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz.Comment: 17 pages, 18 figures, submitted to Phys. Rev.

    Small-x Dipole Evolution Beyond the Large-N_c Limit

    Get PDF
    We present a method to include colour-suppressed effects in the Mueller dipole picture. The model consistently includes saturation effects both in the evolution of dipoles and in the interactions of dipoles with a target in a frame-independent way. When implemented in a Monte Carlo simulation together with our previous model of energy--momentum conservation and a simple dipole description of initial state protons and virtual photons, the model is able to reproduce to a satisfactory degree both the gamma*-p cross sections as measured at HERA as well as the total p-p cross section all the way from ISR energies to the Tevatron and beyond

    Advantages of modified ADM formulation: constraint propagation analysis of Baumgarte-Shapiro-Shibata-Nakamura system

    Get PDF
    Several numerical relativity groups are using a modified ADM formulation for their simulations, which was developed by Nakamura et al (and widely cited as Baumgarte-Shapiro-Shibata-Nakamura system). This so-called BSSN formulation is shown to be more stable than the standard ADM formulation in many cases, and there have been many attempts to explain why this re-formulation has such an advantage. We try to explain the background mechanism of the BSSN equations by using eigenvalue analysis of constraint propagation equations. This analysis has been applied and has succeeded in explaining other systems in our series of works. We derive the full set of the constraint propagation equations, and study it in the flat background space-time. We carefully examine how the replacements and adjustments in the equations change the propagation structure of the constraints, i.e. whether violation of constraints (if it exists) will decay or propagate away. We conclude that the better stability of the BSSN system is obtained by their adjustments in the equations, and that the combination of the adjustments is in a good balance, i.e. a lack of their adjustments might fail to obtain the present stability. We further propose other adjustments to the equations, which may offer more stable features than the current BSSN equations.Comment: 10 pages, RevTeX4, added related discussion to gr-qc/0209106, the version to appear in Phys. Rev.

    Gravitational waves from axisymmetrically oscillating neutron stars in general relativistic simulations

    Full text link
    Gravitational waves from oscillating neutron stars in axial symmetry are studied performing numerical simulations in full general relativity. Neutron stars are modeled by a polytropic equation of state for simplicity. A gauge-invariant wave extraction method as well as a quadrupole formula are adopted for computation of gravitational waves. It is found that the gauge-invariant variables systematically contain numerical errors generated near the outer boundaries in the present axisymmetric computation. We clarify their origin, and illustrate it possible to eliminate the dominant part of the systematic errors. The best corrected waveforms for oscillating and rotating stars currently contain errors of magnitude 103\sim 10^{-3} in the local wave zone. Comparing the waveforms obtained by the gauge-invariant technique with those by the quadrupole formula, it is shown that the quadrupole formula yields approximate gravitational waveforms besides a systematic underestimation of the amplitude of O(M/R)O(M/R) where MM and RR denote the mass and the radius of neutron stars. However, the wave phase and modulation of the amplitude can be computed accurately. This indicates that the quadrupole formula is a useful tool for studying gravitational waves from rotating stellar core collapse to a neutron star in fully general relativistic simulations. Properties of the gravitational waveforms from the oscillating and rigidly rotating neutron stars are also addressed paying attention to the oscillation associated with fundamental modes

    A remarkable record of the genus Pseudolucia from Bolivia (Lepidoptera: Lycaenidae)

    Get PDF
    The occurrence of a taxon morphologically close to Pseudolucia jujuyensis Bálint, Eisele & Johnson, 2000 is recorded in dry habitats of Torotoro Dinosaurs National Park, Potosí, Bolivia. This record remarkably extends the range of Pseudolucia by almost 800 km northwards in austral South America. Five specimens were available for examinations, hence wing-pattern, genitalia and mitochondrial DNA were analysed. However, the taxonomy of the specimens could not be satisfactorily resolved in relation to P. jujuyensis, for which only the holotype exists. The females use Cuscuta for ovipositing, what is supposedly the larval host – a remarkable character of the chilensis species group of Pseudolucia, which includes P. jujuyensis. On the basis of molecular markers it was revealed that the Torotoro population is the sister to the rest of the chilensis species group, which together are the clade sister to the rest of the genus

    Scalar field induced oscillations of neutron stars and gravitational collapse

    Full text link
    We study the interaction of massless scalar fields with self-gravitating neutron stars by means of fully dynamic numerical simulations of the Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to spherical symmetry and the neutron stars are approximated by relativistic polytropes. Studying the nonlinear dynamics of isolated neutron stars is very effectively performed within the characteristic formulation of general relativity, in which the spacetime is foliated by a family of outgoing light cones. We are able to compactify the entire spacetime on a computational grid and simultaneously impose natural radiative boundary conditions and extract accurate radiative signals. We study the transfer of energy from the scalar field to the fluid star. We find, in particular, that depending on the compactness of the neutron star model, the scalar wave forces the neutron star either to oscillate in its radial modes of pulsation or to undergo gravitational collapse to a black hole on a dynamical timescale. The radiative signal, read off at future null infinity, shows quasi-normal oscillations before the setting of a late time power-law tail.Comment: 12 pages, 13 figures, submitted to Phys. Rev.

    Tips for implementing multigrid methods on domains containing holes

    Full text link
    As part of our development of a computer code to perform 3D `constrained evolution' of Einstein's equations in 3+1 form, we discuss issues regarding the efficient solution of elliptic equations on domains containing holes (i.e., excised regions), via the multigrid method. We consider as a test case the Poisson equation with a nonlinear term added, as a means of illustrating the principles involved, and move to a "real world" 3-dimensional problem which is the solution of the conformally flat Hamiltonian constraint with Dirichlet and Robin boundary conditions. Using our vertex-centered multigrid code, we demonstrate globally second-order-accurate solutions of elliptic equations over domains containing holes, in two and three spatial dimensions. Keys to the success of this method are the choice of the restriction operator near the holes and definition of the location of the inner boundary. In some cases (e.g. two holes in two dimensions), more and more smoothing may be required as the mesh spacing decreases to zero; however for the resolutions currently of interest to many numerical relativists, it is feasible to maintain second order convergence by concentrating smoothing (spatially) where it is needed most. This paper, and our publicly available source code, are intended to serve as semi-pedagogical guides for those who may wish to implement similar schemes.Comment: 18 pages, 11 figures, LaTeX. Added clarifications and references re. scope of paper, mathematical foundations, relevance of work. Accepted for publication in Classical & Quantum Gravit

    Epidermal Notch1 recruits RORγ+ group 3 innate lymphoid cells to orchestrate normal skin repair

    Get PDF
    Notch has a well-defined role in controlling cell fate decisions in the embryo and the adult epidermis and immune systems, yet emerging evidence suggests Notch also directs non-cell-autonomous signalling in adult tissues. Here, we show that Notch1 works as a damage response signal. Epidermal Notch induces recruitment of immune cell subsets including RORγ + ILC3s into wounded dermis; RORγ + ILC3s are potent sources of IL17F in wounds and control immunological and epidermal cell responses. Mice deficient for RORγ + ILC3s heal wounds poorly resulting from delayed epidermal proliferation and macrophage recruitment in a CCL3-dependent process. Notch1 upregulates TNFα and the ILC3 recruitment chemokines CCL20 and CXCL13. TNFα, as a Notch1 effector, directs ILC3 localization and rates of wound healing. Altogether these findings suggest that Notch is a key stress/injury signal in skin epithelium driving innate immune cell recruitment and normal skin tissue repair

    Computing gravitational waves from slightly nonspherical stellar collapse to black hole: Odd-parity perturbation

    Full text link
    Nonspherical stellar collapse to a black hole is one of the most promising gravitational wave sources for gravitational wave detectors. We numerically study gravitational waves from a slightly nonspherical stellar collapse to a black hole in linearized Einstein theory. We adopt a spherically collapsing star as the zeroth-order solution and gravitational waves are computed using perturbation theory on the spherical background. In this paper we focus on the perturbation of odd-parity modes. Using the polytropic equations of state with polytropic indices np=1n_p=1 and 3, we qualitatively study gravitational waves emitted during the collapse of neutron stars and supermassive stars to black holes from a marginally stable equilibrium configuration. Since the matter perturbation profiles can be chosen arbitrarily, we provide a few types for them. For np=1n_p=1, the gravitational waveforms are mainly characterized by a black hole quasinormal mode ringing, irrespective of perturbation profiles given initially. However, for np=3n_p=3, the waveforms depend strongly on the initial perturbation profiles. In other words, the gravitational waveforms strongly depend on the stellar configuration and, in turn, on the ad hoc choice of the functional form of the perturbation in the case of supermassive stars.Comment: 31 pages, accepted for publication in Phys. Rev. D, typos and minor errors correcte

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809
    corecore