202 research outputs found

    Urokinase Plasminogen Activator and Gelatinases Are Associated with Membrane Vesicles Shed by Human HT1080 Fibrosarcoma Cells

    Get PDF
    Membrane vesicles are shed by tumor cells both in vivo and in vitro. Although their functions are not well understood, it has been proposed that they may play multiple roles in tumor progression. We characterized membrane vesicles from human HT1080 fibrosarcoma cell cultures for the presence of proteinases involved in tumor invasion. By gelatin zymography and Western blotting, these vesicles showed major bands corresponding to the zymogen and active forms of gelatinase B (MMP-9) and gelatinase A (MMP-2) and to the MMP-9. tissue inhibitor of metalloproteinase 1 complex. Both gelatinases appeared to be associated with the vesicle membrane. HT1080 cell vesicles also showed a strong, plasminogen-dependent fibrinolytic activity in 125I fibrin assays; this activity was associated with urokinase plasminogen activator, as shown by casein zymography and Western blotting. Urokinase was bound to its high affinity receptor on the vesicle membrane. Addition of plasminogen resulted in activation of the progelatinases associated with the vesicles, indicating a role of the urokinase-plasmin system in MMP-2 and MMP-9 activation. We propose that vesicles shed by tumor cells may provide a large membrane surface for the activation of membrane-associated proteinases involved in extracellular matrix degradation and tissue invasion

    Motor imagery training speeds up gait recovery and decreases the risk of falls in patients submitted to total knee arthroplasty

    Get PDF
    With Motor imagery (MI), movements are mentally rehearsed without overt actions; this procedure has been adopted in motor rehabilitation, primarily in brain-damaged patients. Here we rather tested the clinical potentials of MI in purely orthopaedic patients who, by definition, should maximally benefit of mental exercises because of their intact brain. To this end we studied the recovery of gait after total knee arthroplasty and evaluated whether MI combined with physiotherapy could speed up the recovery of gait and even limit the occurrence of future falls. We studied 48 patients at the beginning and by the end of the post-surgery residential rehabilitation program: half of them completed a specific MI training supported by computerized visual stimulation (experimental group); the other half performed a non-motoric cognitive training (control group). All patients also had standard physiotherapy. By the end of the rehabilitation, the experimental group showed a better recovery of gait and active knee flexion-extension movements, and less pain. The number of falls or near falls after surgery was significantly lower in the experimental group. These results show that MI can improve gait abilities and limit future falls in orthopaedic patients, without collateral risks and with limited costs

    PET/CT Imaging of Zr-89-N-sucDf-Pembrolizumab in Healthy Cynomolgus Monkeys

    Get PDF
    PURPOSE: Programmed cell death-1 receptor (PD-1) and its ligand (PD-L1) are the targets for immunotherapy in many cancer types. Although PD-1 blockade has therapeutic effects, the efficacy differs between patients. Factors contributing to this variability are PD-L1 expression levels and immune cells present in tumors. However, it is not well understood how PD-1 expression in the tumor microenvironment impacts immunotherapy response. Thus, imaging of PD-1-expressing immune cells is of interest. This study aims to evaluate the biodistribution of Zirconium-89 (89Zr)-labeled pembrolizumab, a humanized IgG4 kappa monoclonal antibody targeting PD-1, in healthy cynomolgus monkeys as a translational model of tracking PD-1-positive immune cells. PROCEDURES: Pembrolizumab was conjugated with the tetrafluorophenol-N-succinyl desferal-Fe(III) ester (TFP-N-sucDf) and subsequently radiolabeled with 89Zr. Four cynomolgus monkeys with no previous exposure to humanized monoclonal antibodies received tracer only or tracer co-injected with pembrolizumab intravenously over 5 min. Thereafter, a static whole-body positron emission tomography (PET) scan was acquired with 10 min per bed position on days 0, 2, 5, and 7. Image-derived standardized uptake values (SUVmean) were quantified by region of interest (ROI) analysis. RESULTS: 89Zr-N-sucDf-pembrolizumab was synthesized with high radiochemical purity (> 99 %) and acceptable molar activity (> 7 MBq/nmol). In animals dosed with tracer only, 89Zr-N-sucDf-pembrolizumab distribution in lymphoid tissues such as mesenteric lymph nodes, spleen, and tonsils increased over time. Except for the liver, low radiotracer distribution was observed in all non-lymphoid tissue including the lung, muscle, brain, heart, and kidney. When a large excess of pembrolizumab was co-administered with a radiotracer, accumulation in the lymph nodes, spleen, and tonsils was reduced, suggestive of target-mediated accumulation. CONCLUSIONS: 89Zr-N-sucDf-pembrolizumab shows preferential uptake in the lymphoid tissues including the lymph nodes, spleen, and tonsils. 89Zr-N-sucDf-pembrolizumab may be useful in tracking the distribution of a subset of immune cells in non-human primates and humans. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02760225

    A novel haemocytometric COVID-19 prognostic score developed and validated in an observational multicentre European hospital-based study

    Get PDF
    COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration, and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome. The prognostic score, with ROC curve AUC at baseline of 0.753 (95% CI 0.723-0.781) increasing to 0.875 (95% CI 0.806-0.926) on day 3, was superior to any individual parameter at distinguishing between clinical severity. Findings were confirmed in a validation cohort. Aim is that the score and haemocytometry results are simultaneously provided by analyser software, enabling wide applicability of the score as haemocytometry is commonly requested in COVID-19 patients

    Mechanisms of ring chromosome formation, ring instability and clinical consequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The breakpoints and mechanisms of ring chromosome formation were studied and mapped in 14 patients.</p> <p>Methods</p> <p>Several techniques were performed such as genome-wide array, MLPA (Multiplex Ligation-Dependent Probe Amplification) and FISH (Fluorescent <it>in situ </it>Hybridization).</p> <p>Results</p> <p>The ring chromosomes of patients I to XIV were determined to be, respectively: r(3)(p26.1q29), r(4)(p16.3q35.2), r(10)(p15.3q26.2), r(10)(p15.3q26.13), r(13)(p13q31.1), r(13)(p13q34), r(14)(p13q32.33), r(15)(p13q26.2), r(18)(p11.32q22.2), r(18)(p11.32q21.33), r(18)(p11.21q23), r(22)(p13q13.33), r(22)(p13q13.2), and r(22)(p13q13.2). These rings were found to have been formed by different mechanisms, such as: breaks in both chromosome arms followed by end-to-end reunion (patients IV, VIII, IX, XI, XIII and XIV); a break in one chromosome arm followed by fusion with the subtelomeric region of the other (patients I and II); a break in one chromosome arm followed by fusion with the opposite telomeric region (patients III and X); fusion of two subtelomeric regions (patient VII); and telomere-telomere fusion (patient XII). Thus, the r(14) and one r(22) can be considered complete rings, since there was no loss of relevant genetic material. Two patients (V and VI) with r(13) showed duplication along with terminal deletion of 13q, one of them proved to be inverted, a mechanism known as inv-dup-del. Ring instability was detected by ring loss and secondary aberrations in all but three patients, who presented stable ring chromosomes (II, XIII and XIV).</p> <p>Conclusions</p> <p>We concluded that the clinical phenotype of patients with ring chromosomes may be related with different factors, including gene haploinsufficiency, gene duplications and ring instability. Epigenetic factors due to the circular architecture of ring chromosomes must also be considered, since even complete ring chromosomes can result in phenotypic alterations, as observed in our patients with complete r(14) and r(22).</p

    Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth

    Get PDF
    Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully-formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier-Graner-Hogeweg-model simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller-Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally-observed adhesion-driven contact inhibition of chemotaxis in the simulation causes randomly-distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface-normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.Comment: Thoroughly revised version, now in press in PLoS Computational Biology. 53 pages, 13 figures, 2 supporting figures, 56 supporting movies, source code and parameters files for computer simulations provided. Supporting information: http://www.psb.ugent.be/~romer/ploscompbiol/ Source code: http://sourceforge.net/projects/tst
    corecore