275 research outputs found
A review of the decoherent histories approach to the arrival time problem in quantum theory
We review recent progress in understanding the arrival time problem in
quantum mechanics, from the point of view of the decoherent histories approach
to quantum theory. We begin by discussing the arrival time problem, focussing
in particular on the role of the probability current in the expected classical
solution. After a brief introduction to decoherent histories we review the use
of complex potentials in the construction of appropriate class operators. We
then discuss the arrival time problem for a particle coupled to an environment,
and review how the arrival time probability can be expressed in terms of a POVM
in this case. We turn finally to the question of decoherence of the
corresponding histories, and we show that this can be achieved for simple
states in the case of a free particle, and for general states for a particle
coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding
Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets
At low energies, electrons in doped graphene sheets are described by a
massless Dirac fermion Hamiltonian. In this work we present a semi-analytical
expression for the dynamical density-density linear-response function of
noninteracting massless Dirac fermions (the so-called "Lindhard" function) at
finite temperature. This result is crucial to describe finite-temperature
screening of interacting massless Dirac fermions within the Random Phase
Approximation. In particular, we use it to make quantitative predictions for
the specific heat and the compressibility of doped graphene sheets. We find
that, at low temperatures, the specific heat has the usual normal-Fermi-liquid
linear-in-temperature behavior, with a slope that is solely controlled by the
renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.
Polymer quantization of the free scalar field and its classical limit
Building on prior work, a generally covariant reformulation of free scalar
field theory on the flat Lorentzian cylinder is quantized using Loop Quantum
Gravity (LQG) type `polymer' representations. This quantization of the {\em
continuum} classical theory yields a quantum theory which lives on a discrete
spacetime lattice. We explicitly construct a state in the polymer Hilbert space
which reproduces the standard Fock vacuum- two point functions for long
wavelength modes of the scalar field. Our construction indicates that the
continuum classical theory emerges under coarse graining. All our
considerations are free of the "triangulation" ambiguities which plague
attempts to define quantum dynamics in LQG. Our work constitutes the first
complete LQG type quantization of a generally covariant field theory together
with a semi-classical analysis of the true degrees of freedom and thus provides
a perfect infinite dimensional toy model to study open issues in LQG,
particularly those pertaining to the definition of quantum dynamics.Comment: 58 page
Alternative approach to in the uMSSM
The gluino contributions to the Wilson coefficients for are calculated within the unconstrained MSSM. New stringent bounds on
the and mass insertion parameters are
obtained in the limit in which the SM and SUSY contributions to
approximately cancel. Such a cancellation can plausibly appear within several
classes of SUSY breaking models in which the trilinear couplings exhibit a
factorized structure proportional to the Yukawa matrices. Assuming this
cancellation takes place, we perform an analysis of the decay. We
show that in a supersymmetric world such an alternative is reasonable and it is
possible to saturate the branching ratio and produce a CP
asymmetry of up to 20%, from only the gluino contribution to
coefficients. Using photon polarization a LR asymmetry can be defined that in
principle allows for the and contributions to the decay to be disentangled. In this scenario no constraints on the ``sign
of '' can be derived.Comment: LaTeX2e, 23 pages, 7 ps figure, needs package epsfi
Order in glassy systems
A directly measurable correlation length may be defined for systems having a
two-step relaxation, based on the geometric properties of density profile that
remains after averaging out the fast motion. We argue that the length diverges
if and when the slow timescale diverges, whatever the microscopic mechanism at
the origin of the slowing down. Measuring the length amounts to determining
explicitly the complexity from the observed particle configurations. One may
compute in the same way the Renyi complexities K_q, their relative behavior for
different q characterizes the mechanism underlying the transition. In
particular, the 'Random First Order' scenario predicts that in the glass phase
K_q=0 for q>x, and K_q>0 for q<x, with x the Parisi parameter. The hypothesis
of a nonequilibrium effective temperature may also be directly tested directly
from configurations.Comment: Typos corrected, clarifications adde
Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung
If the dark matter particle is a Majorana fermion, annihilations into two
fermions and one gauge boson could have, for some choices of the parameters of
the model, a non-negligible cross-section. Using a toy model of leptophilic
dark matter, we calculate the constraints on the annihilation cross-section
into two electrons and one weak gauge boson from the PAMELA measurements of the
cosmic antiproton-to-proton flux ratio. Furthermore, we calculate the maximal
astrophysical boost factor allowed in the Milky Way under the assumption that
the leptophilic dark matter particle is the dominant component of dark matter
in our Universe. These constraints constitute very conservative estimates on
the boost factor for more realistic models where the dark matter particle also
couples to quarks and weak gauge bosons, such as the lightest neutralino which
we also analyze for some concrete benchmark points. The limits on the
astrophysical boost factors presented here could be used to evaluate the
prospects to detect a gamma-ray signal from dark matter annihilations at
currently operating IACTs as well as in the projected CTA.Comment: 32 pages; 13 figure
Gluon mass generation in the PT-BFM scheme
In this article we study the general structure and special properties of the
Schwinger-Dyson equation for the gluon propagator constructed with the pinch
technique, together with the question of how to obtain infrared finite
solutions, associated with the generation of an effective gluon mass.
Exploiting the known all-order correspondence between the pinch technique and
the background field method, we demonstrate that, contrary to the standard
formulation, the non-perturbative gluon self-energy is transverse
order-by-order in the dressed loop expansion, and separately for gluonic and
ghost contributions. We next present a comprehensive review of several subtle
issues relevant to the search of infrared finite solutions, paying particular
attention to the role of the seagull graph in enforcing transversality, the
necessity of introducing massless poles in the three-gluon vertex, and the
incorporation of the correct renormalization group properties. In addition, we
present a method for regulating the seagull-type contributions based on
dimensional regularization; its applicability depends crucially on the
asymptotic behavior of the solutions in the deep ultraviolet, and in particular
on the anomalous dimension of the dynamically generated gluon mass. A
linearized version of the truncated Schwinger-Dyson equation is derived, using
a vertex that satisfies the required Ward identity and contains massless poles
belonging to different Lorentz structures. The resulting integral equation is
then solved numerically, the infrared and ultraviolet properties of the
obtained solutions are examined in detail, and the allowed range for the
effective gluon mass is determined. Various open questions and possible
connections with different approaches in the literature are discussed.Comment: 54 pages, 24 figure
Higgs-Mediated tau --> mu and tau --> e transitions in II Higgs doublet Model and Supersymmetry
We study the phenomenology of the mu-tau and e-tau lepton flavour violation
(LFV) in a general two Higgs Doublet Model (2HDM) including the supersymmetric
case. We consider several LFV decay modes of the charged fermion tau, namely
tau-> l_jgamma, tau->l_j l_k l_k and tau-> l_jeta. The predictions and the
correlations among the rates of the above processes are computed. In
particular, it is shown that tau->l_jgamma processes are the most sensitive
channels to Higgs-mediated LFV specially if the splitting among the neutral
Higgs bosons masses is not below the 10% level.Comment: v2=published version: 13 pages, 4 figures, text improved and
reference added. Two loop effects (relevant for tau->l_jgamma) added.
Conclusions unchange
Super-Hubble de Sitter Fluctuations and the Dynamical RG
Perturbative corrections to correlation functions for interacting theories in
de Sitter spacetime often grow secularly with time, due to the properties of
fluctuations on super-Hubble scales. This growth can lead to a breakdown of
perturbation theory at late times. We argue that Dynamical Renormalization
Group (DRG) techniques provide a convenient framework for interpreting and
resumming these secularly growing terms. In the case of a massless scalar field
in de Sitter with quartic self-interaction, the resummed result is also less
singular in the infrared, in precisely the manner expected if a dynamical mass
is generated. We compare this improved infrared behavior with large-N
expansions when applicable.Comment: 33 pages, 4 figure
- …
