931 research outputs found
Enhanced Sensitivity to the Time Variation of the Fine-Structure Constant and in Diatomic Molecules: A Closer Examination of Silicon Monobromide
Recently it was pointed out that transition frequencies in certain diatomic
molecules have an enhanced sensitivity to variations in the fine-structure
constant and the proton-to-electron mass ratio due to a near
cancellation between the fine-structure and vibrational interval in a ground
electronic multiplet [V.~V.~Flambaum and M.~G.~Kozlov, Phys. Rev. Lett.~{\bf
99}, 150801 (2007)]. One such molecule possessing this favorable quality is
silicon monobromide. Here we take a closer examination of SiBr as a candidate
for detecting variations in and . We analyze the rovibronic
spectrum by employing the most accurate experimental data available in the
literature and perform \emph{ab initio} calculations to determine the precise
dependence of the spectrum on variations in . Furthermore, we calculate
the natural linewidths of the rovibronic levels, which place a fundamental
limit on the accuracy to which variations may be determined.Comment: 8 pages, 2 figure
Strain bursts in plastically deforming Molybdenum micro- and nanopillars
Plastic deformation of micron and sub-micron scale specimens is characterized
by intermittent sequences of large strain bursts (dislocation avalanches) which
are separated by regions of near-elastic loading. In the present investigation
we perform a statistical characterization of strain bursts observed in
stress-controlled compressive deformation of monocrystalline Molybdenum
micropillars. We characterize the bursts in terms of the associated elongation
increments and peak deformation rates, and demonstrate that these quantities
follow power-law distributions that do not depend on specimen orientation or
stress rate. We also investigate the statistics of stress increments in between
the bursts, which are found to be Weibull distributed and exhibit a
characteristic size effect. We discuss our findings in view of observations of
deformation bursts in other materials, such as face-centered cubic and
hexagonal metals.Comment: 14 pages, 8 figures, submitted to Phil Ma
The tensor hypercontracted parametric reduced density matrix algorithm: coupled-cluster accuracy with O(r^4) scaling
Tensor hypercontraction is a method that allows the representation of a
high-rank tensor as a product of lower-rank tensors. In this paper, we show how
tensor hypercontraction can be applied to both the electron repulsion integral
(ERI) tensor and the two-particle excitation amplitudes used in the parametric
reduced density matrix (pRDM) algorithm. Because only O(r) auxiliary functions
are needed in both of these approximations, our overall algorithm can be shown
to scale as O(r4), where r is the number of single-particle basis functions. We
apply our algorithm to several small molecules, hydrogen chains, and alkanes to
demonstrate its low formal scaling and practical utility. Provided we use
enough auxiliary functions, we obtain accuracy similar to that of the
traditional pRDM algorithm, somewhere between that of CCSD and CCSD(T).Comment: 11 pages, 1 figur
Homogeneous Gold Catalysis through Relativistic Effects: Addition of Water to Propyne
In the catalytic addition of water to propyne the Au(III) catalyst is not
stable under non-relativistic conditions and dissociates into a Au(I) compound
and Cl2. This implies that one link in the chain of events in the catalytic
cycle is broken and relativity may well be seen as the reason why Au(III)
compounds are effective catalysts.Comment: 12 pages, 3 figures, 1 tabl
Identification of the slow E3 transition 136mCs -> 136Cs with conversion electrons
We performed at ISOLDE the spectroscopy of the decay of the 8- isomer in
136Cs by and conversion-electron detection. For the first time the excitation
energy of the isomer and the multipolarity of its decay have been measured. The
half-life of the isomeric state was remeasured to T1/2 = 17.5(2) s. This isomer
decays via a very slow 518 keV E3 transition to the ground state. In addition
to this, a much weaker decay branch via a 413 keV M4 and a subsequent 105 keV
E2 transition has been found. Thus we have found a new level at 105 keV with
spin 4+ between the isomeric and the ground state. The results are discussed in
comparison to shell model calculations.Comment: Phys. Rev. C accepted for publicatio
A prospective, blinded evaluation of a video-assisted ‘4-stage approach’ during undergraduate student practical skills training
BACKGROUND: The 4-stage approach (4-SA) is used as a didactic method for teaching practical skills in international courses on resuscitation and the structured care of trauma patients. The aim of this study was to evaluate objective and subjective learning success of a video-assisted 4-SA in teaching undergraduate medical students. METHODS: The participants were medical students learning the principles of the acute treatment of trauma patients in their multidiscipline course on emergency and intensive care medicine. The participants were quasi- randomly divided into two groups. The 4-SA was used in both groups. In the control group, all four steps were presented by an instructor. In the study group, the first two steps were presented as a video. At the end of the course a 5-minute objective, structured clinical examination (OSCE) of a simulated trauma patient was conducted. The test results were divided into objective results obtained through a checklist with 9 dichotomous items and the assessment of the global performance rated subjectively by the examiner on a Likert scale from 1 to 6. RESULTS: 313 students were recruited; the results of 256 were suitable for analysis. The OSCE results were excellent in both groups and did not differ significantly (control group: median 9, interquantil range (IQR) 8–9, study group: median 9, IQR 8–9; p = 0.29). The global performance was rated significantly better for the study group (median 1, IQR 1–2 vs. median 2, IQR 1–3; p < 0.01). The relative knowledge increase, stated by the students in their evaluation after the course, was greater in the study group (85% vs. 80%). CONCLUSION: It is possible to employ video assistance in the classical 4-SA with comparable objective test results in an OSCE. The global performance was significantly improved with use of video assistance
Calculation of the positron bound state with the copper atom
A new relativistic method for calculation of positron binding to atoms is
presented. The method combines a configuration interaction treatment of the
valence electron and the positron with a many-body perturbation theory
description of their interaction with the atomic core. We apply this method to
positron binding by the copper atom and obtain the binding energy of 170 meV (+
- 10%). To check the accuracy of the method we use a similar approach to
calculate the negative copper ion. The calculated electron affinity is 1.218
eV, in good agreement with the experimental value of 1.236 eV. The problem of
convergence of positron-atom bound state calculations is investigated, and
means to improve it are discussed. The relativistic character of the method and
its satisfactory convergence make it a suitable tool for heavier atoms.Comment: 15 pages, 5 figures, RevTe
First identification of large electric monopole strength in well-deformed rare earth nuclei
Excited states in the well-deformed rare earth isotopes Sm and
Er were populated via ``safe'' Coulomb excitation at the Munich MLL
Tandem accelerator. Conversion electrons were registered in a cooled Si(Li)
detector in conjunction with a magnetic transport and filter system, the
Mini-Orange spectrometer. For the first excited state in Sm at
1099 keV a large value of the monopole strength for the transition to the
ground state of could be extracted. This confirms the interpretation of the lowest
excited state in Sm as the collective -vibrational
excitation of the ground state. In Er the measured large electric
monopole strength of clearly identifies the state at 1934 keV to be the
-vibrational excitation of the ground state.Comment: submitted to Physics Letters
Shell stabilization of super- and hyperheavy nuclei without magic gaps
Quantum stabilization of superheavy elements is quantified in terms of the
shell-correction energy. We compute the shell correction using self-consistent
nuclear models: the non-relativistic Skyrme-Hartree-Fock approach and the
relativistic mean-field model, for a number of parametrizations. All the forces
applied predict a broad valley of shell stabilization around Z=120 and
N=172-184. We also predict two broad regions of shell stabilization in
hyperheavy elements with N approx 258 and N approx 308. Due to the large
single-particle level density, shell corrections in the superheavy elements
differ markedly from those in lighter nuclei. With increasing proton and
neutron numbers, the regions of nuclei stabilized by shell effects become
poorly localized in particle number, and the familiar pattern of shells
separated by magic gaps is basically gone.Comment: 6 pages REVTEX, 4 eps figures, submitted to Phys. Lett.
- …