research

First identification of large electric monopole strength in well-deformed rare earth nuclei

Abstract

Excited states in the well-deformed rare earth isotopes 154^{154}Sm and 166^{166}Er were populated via ``safe'' Coulomb excitation at the Munich MLL Tandem accelerator. Conversion electrons were registered in a cooled Si(Li) detector in conjunction with a magnetic transport and filter system, the Mini-Orange spectrometer. For the first excited 0+0^+ state in 154^{154}Sm at 1099 keV a large value of the monopole strength for the transition to the ground state of ρ2(E0;02+0g+)=96(42)103\rho^2(\text{E0}; 0^+_2 \to 0^+_\text{g}) = 96(42)\cdot 10^{-3} could be extracted. This confirms the interpretation of the lowest excited 0+0^+ state in 154^{154}Sm as the collective β\beta-vibrational excitation of the ground state. In 166^{166}Er the measured large electric monopole strength of ρ2(E0;04+01+)=127(60)103\rho^2(\text{E0}; 0^+_4 \to 0^+_1) = 127(60)\cdot 10^{-3} clearly identifies the 04+0_4^+ state at 1934 keV to be the β\beta-vibrational excitation of the ground state.Comment: submitted to Physics Letters

    Similar works

    Available Versions

    Last time updated on 10/12/2019
    Last time updated on 02/01/2020