1,908 research outputs found

    A new species of Conoryctella (Mammalia: Taeniodonta) from the Paleocene of the San Juan Basin, New Mexico, and a revision of the genus

    Get PDF
    Specimens from Paleocene strata of the Nacimiento Formation in Kutz Canyon, San Juan Basin, New Mexico, add to our knowledge of the poorly known taeniodont genus Conoryctella Gazin, 1939 and provide evidence for its taxonomic revision. C. dragonensis Gazin, 1939 is only known with certainty from its type specimen from the Dragon local fauna, North Horn Formation in east-central Utah, although a poorly preserved maxillary fragment and canine of uncertain provenance from the San Juan Basin, New Mexico, may pertain to this taxon. C. pattersoni, new species, differs from C. dragonensis in its smaller size, less molariform P4 and relatively narrow upper molars. It is known from: dental remains from the Dragon local fauna previously referred to C. dragonensis by Gazin (1939, 1941); dental remains from Torrejonian strata in Kutz Canyon referred by Wilson (1956, p. 82) to conoryctine, n. gen. and sp. ; and newly discovered dental and postcranial remains from a horizon in Kutz Canyon that, based on magnetostratigraphy (Tomida and Butler, 1980), is temporally equivalent to the Dragon local fauna. The occurrences of Conoryctella in the San Juan Basin extend the geographic range of the genus and also extend its time-stratigraphic range into a typical Torrejonian horizon. These extensions further reduce the distinctiveness of the Dragon local fauna, supporting recent arguments that the Dragon local fauna should be considered early Torrejonian in age

    Governance, Risk und Compliance als Führungsaufgabe im Lichte der sich verändernden regulatorischen Anforderungen in der Finanzbranche am Beispiel der Schweiz

    Get PDF
    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)Der vorliegende Beitrag untersucht, wie Führungskräfte der Finanzbranche in der Schweiz, insbesondere in der Bankenbranche, seit der Finanzkrise 2007/2008 und dem damit einhergehenden Wandel in den regulatorischen Vorschriften und der Werte allgemein mit den Themen Governance, Risk und Compliance umgehen

    Secure Vehicular Communication Systems: Implementation, Performance, and Research Challenges

    Get PDF
    Vehicular Communication (VC) systems are on the verge of practical deployment. Nonetheless, their security and privacy protection is one of the problems that have been addressed only recently. In order to show the feasibility of secure VC, certain implementations are required. In [1] we discuss the design of a VC security system that has emerged as a result of the European SeVeCom project. In this second paper, we discuss various issues related to the implementation and deployment aspects of secure VC systems. Moreover, we provide an outlook on open security research issues that will arise as VC systems develop from today's simple prototypes to full-fledged systems

    Structure of a 13-fold superhelix (almost) determined from first principles.

    Get PDF
    Nuclear hormone receptors are cytoplasm-based transcription factors that bind a ligand, translate to the nucleus and initiate gene transcription in complex with a co-activator such as TIF2 (transcriptional intermediary factor 2). For structural studies the co-activator is usually mimicked by a peptide of circa 13 residues, which for the largest part forms an α-helix when bound to the receptor. The aim was to co-crystallize the glucocorticoid receptor in complex with a ligand and the TIF2 co-activator peptide. The 1.82 Å resolution diffraction data obtained from the crystal could not be phased by molecular replacement using the known receptor structures. HPLC analysis of the crystals revealed the absence of the receptor and indicated that only the co-activator peptide was present. The self-rotation function displayed 13-fold rotational symmetry, which initiated an exhaustive but unsuccessful molecular-replacement approach using motifs of 13-fold symmetry such as α- and β-barrels in various geometries. The structure was ultimately determined by using a single α-helix and the software ARCIMBOLDO, which assembles fragments placed by PHASER before using them as seeds for density modification model building in SHELXE. Systematic variation of the helix length revealed upper and lower size limits for successful structure determination. A beautiful but unanticipated structure was obtained that forms superhelices with left-handed twist throughout the crystal, stabilized by ligand interactions. Together with the increasing diversity of structural elements in the Protein Data Bank the results from TIF2 confirm the potential of fragment-based molecular replacement to significantly accelerate the phasing step for native diffraction data at around 2 Å resolution

    The Gerasimov-Drell-Hearn Sum Rule and the Spin Structure of the Nucleon

    Full text link
    The Gerasimov-Drell-Hearn sum rule is one of several dispersive sum rules that connect the Compton scattering amplitudes to the inclusive photoproduction cross sections of the target under investigation. Being based on such universal principles as causality, unitarity, and gauge invariance, these sum rules provide a unique testing ground to study the internal degrees of freedom that hold the system together. The present article reviews these sum rules for the spin-dependent cross sections of the nucleon by presenting an overview of recent experiments and theoretical approaches. The generalization from real to virtual photons provides a microscope of variable resolution: At small virtuality of the photon, the data sample information about the long range phenomena, which are described by effective degrees of freedom (Goldstone bosons and collective resonances), whereas the primary degrees of freedom (quarks and gluons) become visible at the larger virtualities. Through a rich body of new data and several theoretical developments, a unified picture of virtual Compton scattering emerges, which ranges from coherent to incoherent processes, and from the generalized spin polarizabilities on the low-energy side to higher twist effects in deep inelastic lepton scattering.Comment: 32 pages, 19 figures, review articl

    Multitask Learning on Graph Neural Networks: Learning Multiple Graph Centrality Measures with a Unified Network

    Full text link
    The application of deep learning to symbolic domains remains an active research endeavour. Graph neural networks (GNN), consisting of trained neural modules which can be arranged in different topologies at run time, are sound alternatives to tackle relational problems which lend themselves to graph representations. In this paper, we show that GNNs are capable of multitask learning, which can be naturally enforced by training the model to refine a single set of multidimensional embeddings Rd\in \mathbb{R}^d and decode them into multiple outputs by connecting MLPs at the end of the pipeline. We demonstrate the multitask learning capability of the model in the relevant relational problem of estimating network centrality measures, focusing primarily on producing rankings based on these measures, i.e. is vertex v1v_1 more central than vertex v2v_2 given centrality cc?. We then show that a GNN can be trained to develop a \emph{lingua franca} of vertex embeddings from which all relevant information about any of the trained centrality measures can be decoded. The proposed model achieves 89%89\% accuracy on a test dataset of random instances with up to 128 vertices and is shown to generalise to larger problem sizes. The model is also shown to obtain reasonable accuracy on a dataset of real world instances with up to 4k vertices, vastly surpassing the sizes of the largest instances with which the model was trained (n=128n=128). Finally, we believe that our contributions attest to the potential of GNNs in symbolic domains in general and in relational learning in particular.Comment: Published at ICANN2019. 10 pages, 3 Figure

    Analysis of resonance multipoles from polarization observables in eta photoproduction

    Get PDF
    A combined analysis of new eta photoproduction data for total and differential cross sections, target asymmetry and photon asymmetry is presented. Using a few reasonable assumptions we perform the first model-independent analysis of the E0+, E2- and M2- eta photoproduction multipoles. Making use of the well-known A3/2 helicity amplitude of the D13(1520) state we extract its branching ratio to the eta-N channel, Gamma(eta,N)/Gamma = (0.08 +- 0.01)%. At higher energies, we show that the photon asymmetry is extremely sensitive to small multipoles that are excited by photons in the helicity 3/2 state. The new GRAAL photon asymmetry data at higher energy show a clear signal of the F15(1680) excitation which permits extracting an F15(1680)->eta,N branching ratio of (0.15 +0.35 -0.10)%.Comment: 14 pages of LATEX including 7 postscript figure
    corecore