101,703 research outputs found

    One Monopole with k Singularities

    Full text link
    We present all charge one monopole solutions of the Bogomolny equation with k prescribed Dirac singularities for the gauge groups U(2), SO(3), or SU(2). We analyze these solutions comparing them to the previously known expressions for the cases of one or two singularities.Comment: 12 pages, LaTe

    Vitrification of human immature oocytes before and after in vitro maturation: a review

    Get PDF
    The use of immature oocytes subjected to in vitro maturation (IVM) opens interesting perspectives for fertility preservation where ovarian reserves are damaged by pathologies or therapies, as in PCO/PCOS and cancer patients. Human oocyte cryopreservation may offer some advantages compared to embryo freezing, such as fertility preservation in women at risk of losing fertility due to oncological treatment or chronic disease, egg donation and postponing childbirth. It also eliminates religious and/or other ethical, legal, and moral concerns of embryo freezing. In addition, a successful oocyte cryopreservation program could eliminate the need for donor and recipient menstrual cycle synchronization. Recent advances in vitrification technology have markedly improved the oocyte survival rate after warming, with fertilization and implantation rates comparable with those of fresh oocytes. Healthy live births can be achieved from the combination of IVM and vitrification, even if vitrification of in vivo matured oocytes is still more effective. Recently, attention is given to highlight whether vitrification procedures are more successful when performed before or after IVM, on immature GV-stage oocytes, or on in vitro matured MII-stage oocytes. In this review, we emphasize that, even if there are no differences in survival rates between oocytes vitrified prior to or post-IVM, reduced maturation rates of immature oocytes vitrified prior to IVM can be, at least in part, explained by underlying ultrastructural and biomolecular alterations

    Deformation of Codimension-2 Surface and Horizon Thermodynamics

    Full text link
    The deformation equation of a spacelike submanifold with an arbitrary codimension is given by a general construction without using local frames. In the case of codimension-1, this equation reduces to the evolution equation of the extrinsic curvature of a spacelike hypersurface. In the more interesting case of codimension-2, after selecting a local null frame, this deformation equation reduces to the well known (cross) focusing equations. We show how the thermodynamics of trapping horizons is related to these deformation equations in two different formalisms: with and without introducing quasilocal energy. In the formalism with the quasilocal energy, the Hawking mass in four dimension is generalized to higher dimension, and it is found that the deformation of this energy inside a marginal surface can be also decomposed into the contributions from matter fields and gravitational radiation as in the four dimension. In the formalism without the quasilocal energy, we generalize the definition of slowly evolving future outer trapping horizons proposed by Booth to past trapping horizons. The dynamics of the trapping horizons in FLRW universe is given as an example. Especially, the slowly evolving past trapping horizon in the FLRW universe has close relation to the scenario of slow-roll inflation. Up to the second order of the slowly evolving parameter in this generalization, the temperature (surface gravity) associated with the slowly evolving trapping horizon in the FLRW universe is essentially the same as the one defined by using the quasilocal energy.Comment: Latex, 61 pages, no figures; v2, type errors corrected; v3, references and comments are added, English is improved, to appear in JHE

    Maintenance Intravenous Fluids in Acutely Ill Patients

    Get PDF

    Monotonic Distributive Semilattices

    Get PDF
    In the study of algebras related to non-classical logics, (distributive) semilattices are always present in the background. For example, the algebraic semantic of the {→, ∧, ⊤}-fragment of intuitionistic logic is the variety of implicative meet-semilattices (Chellas 1980; Hansen 2003). In this paper we introduce and study the class of distributive meet-semilattices endowed with a monotonic modal operator m. We study the representation theory of these algebras using the theory of canonical extensions and we give a topological duality for them. Also, we show how our new duality extends to some particular subclasses.Fil: Celani, Sergio Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; ArgentinaFil: Menchón, María Paula. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Pairbreaking Without Magnetic Impurities in Disordered Superconductors

    Get PDF
    We study analytically the effects of inhomogeneous pairing interactions in short coherence length superconductors, using a spatially varying Bogoliubov-deGennes model. Within the Born approximation, it reproduces all of the standard Abrikosov-Gor'kov pairbreaking and gaplessness effects, even in the absence of actual magnetic impurities. For pairing disorder on a single site, the T-matrix gives rise to bound states within the BCS gap. Our results are compared with recent scanning tunneling microscopy measurements on Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} with Zn or Ni impurities.Comment: 4 pages, 2 figures, submitted to PR

    Performance of Smart Materials-Based Instrumentation for Force Measurements in Biomedical Applications: A Methodological Review

    Get PDF
    The introduction of smart materials will become increasingly relevant as biomedical technologies progress. Smart materials sense and respond to external stimuli (e.g., chemical, electrical, mechanical, or magnetic signals) or environmental circumstances (e.g., temperature, illuminance, acidity, or humidity), and provide versatile platforms for studying various biological processes because of the numerous analogies between smart materials and biological systems. Several applications based on this class of materials are being developed using different sensing principles and fabrication technologies. In the biomedical field, force sensors are used to characterize tissues and cells, as feedback to develop smart surgical instruments in order to carry out minimally invasive surgery. In this regard, the present work provides an overview of the recent scientific literature regarding the developments in force measurement methods for biomedical applications involving smart materials. In particular, performance evaluation of the main methods proposed in the literature is reviewed on the basis of their results and applications, focusing on their metrological characteristics, such as measuring range, linearity, and measurement accuracy. Classification of smart materials-based force measurement methods is proposed according to their potential applications, highlighting advantages and disadvantages
    • …
    corecore