7 research outputs found

    Acid phosphatase test proves superior to standard phenotypic identification procedure for Clostridium perfringens strains isolated from water

    Get PDF
    Clostridium perfringens is used as an indicator for persistent faecal pollution as well as to monitor the efficacy of water treatment processes. For these purposes, differentiation between C. perfringens and other Clostridia is essential and is routinely carried out by phenotypic standard tests as proposed in the ISO/CD 6461-2:2002 (ISO_LGMN: lactose fermentation, gelatine liquidation, motility and nitrate reduction). Because the ISO_LGMN procedure is time consuming and labour intensive, the acid phosphatase test was investigated as a possible and much more rapid alternative method for confirmation. The aim of our study was to evaluate and compare confirmation results obtained by these two phenotypic methods using genotypically identified strains, what to our knowledge has not been accomplished before. For this purpose, a species specific PCR method was selected based on the results received for type strains and genotypically characterised environmental strains. For the comparative investigation type strains as well as presumptive C. perfringens isolates from water and faeces samples were used. The acid phosphatase test revealed higher percentage (92%) of correctly identified environmental strains (n = 127) than the ISO_LGMN procedure (83%) and proved to be a sensitive and reliable confirmation method

    Online flow cytometry reveals microbial dynamics influenced by concurrent natural and operational events in groundwater used for drinking water treatment

    No full text
    Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality - particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells mu L-1. The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems
    corecore