4,309 research outputs found
Specialized pro-resolving mediators prevents cardiac dysfunction by modulating Ca2+ handling and NRF2 axis
Trabajo presentado en el ESC Congress 2021 - The Digital Experience, celebrado en modalidad virtual el 27 de agosto de 2021
Impaired Mitophagy and Protein Acetylation Levels in Fibroblasts from Parkinson's Disease Patients
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. While most PD cases are idiopathic, the known genetic causes of PD are useful to understand common disease mechanisms. Recent data suggests that autophagy is regulated by protein acetylation mediated by histone acetyltransferase (HAT) and histone deacetylase (HDAC) activities. The changes in histone acetylation reported to be involved in PD pathogenesis have prompted this investigation of protein acetylation and HAT and HDAC activities in both idiopathic PD and G2019S leucine-rich repeat kinase 2 (LRRK2) cell cultures. Fibroblasts from PD patients (with or without the G2019S LRRK2 mutation) and control subjects were used to assess the different phenotypes between idiopathic and genetic PD. G2019S LRRK2 mutation displays increased mitophagy due to the activation of class III HDACs whereas idiopathic PD exhibits downregulation of clearance of defective mitochondria. This reduction of mitophagy is accompanied by more reactive oxygen species (ROS). In parallel, the acetylation protein levels of idiopathic and genetic individuals are different due to an upregulation in class I and II HDACs. Despite this upregulation, the total HDAC activity is decreased in idiopathic PD and the total HAT activity does not significantly vary. Mitophagy upregulation is beneficial for reducing the ROS-induced harm in genetic PD. The defective mitophagy in idiopathic PD is inherent to the decrease in class III HDACs. Thus, there is an imbalance between total HATs and HDACs activities in idiopathic PD, which increases cell death. The inhibition of HATs in idiopathic PD cells displays a cytoprotective effect
Urinary exosomes reveal protein signatures in hypertensive patients with albuminuria
Albuminuria is an indicator of cardiovascular risk and renal damage in hypertensive individuals. Chronic renin-angiotensin system (RAS) suppression facilitates blood pressure control and prevents development of new-onset-albuminuria. A significant number of patients, however, develop albuminuria despite chronic RAS blockade, and the physiopathological mechanisms are underexplored. Urinary exosomes reflect pathological changes taking place in the kidney. The objective of this work was to examine exosomal protein alterations in hypertensive patients with albuminuria in the presence of chronic RAS suppression, to find novel clues underlying its development. Patients were followed-up for three years and were classified as: a) patients with persistent normoalbuminuria; b) patients developing de novo albuminuria; and c) patients with maintained albuminuria. Exosomal protein alterations between groups were identified by isobaric tag quantitation (iTRAQ). Confirmation was approached by target analysis (SRM). In total, 487 proteins were identified with high confidence. Specifically, 48 proteins showed an altered pattern in response to hypertension and/or albuminuria. Out of them, 21 proteins interact together in three main functional clusters: glycosaminoglycan degradation, coagulation and complement system, and oxidative stress. The identified proteins constitute potential targets for drug development and may help to define therapeutic strategies to evade albuminuria progression in hypertensive patients chronically treated.Instituto de Salud Carlos III, fondos FEDER/FSE (PI11/01401, PI13/01873, PI14/01841, IF08/3667-1, PI11-02239, PI 14/0917, PI11/02432, PI13/01746, PI14/01650, PI16/01334, PT13/0001/0013, CP09/00229, CP15/00129, CPII15/00027), Fundacion SENEFRO, Fundacion Conchita Rabago de Jimenez Diaz, and Redes Tematicas de Investigacion Cooperativa (fondos FEDER/FSE, RD12/0021/0001, RD12/0042/0071). These results are lined up with the Spanish initiative on the Human Proteome Project (SpHPP).S
Plasma Molecular Signatures in Hypertensive Patients With Renin-Angiotensin System Suppression: New Predictors of Renal Damage and De Novo Albuminuria Indicators
Albuminuria is a risk factor strongly associated with cardiovascular disease, the first cause of death in the general population. It is well established that renin-angiotensin system suppressors prevent the development of new-onset albuminuria in naïf hypertensive patients and diminish its excretion, but we cannot forget the percentage of hypertensive patients who develop de novo albuminuria. Here, we applied multiple proteomic strategy with the purpose to elucidate specific molecular pathways involved in the pathogenesis and provide predictors and chronic organ damage indicators. Briefly, 1143 patients were followed up for a minimum period of 3 years. One hundred and twenty-nine hypertensive patients chronically renin-angiotensin system suppressed were recruited, classified in 3 different groups depending on their albuminuria levels (normoalbuminuria, de novo albuminuria, and sustained albuminuria), and investigated by multiple proteomic strategies. Our strategy allowed us to perform one of the deepest plasma proteomic analysis to date, which has shown 2 proteomic signatures: (1) with predictive value of de novo albuminuria and (2) sustained albuminuria indicator proteins. These proteins are involved in inflammation, immune as well as in the proteasome activation occurring in situations of endoplasmic reticulum stress. Furthermore, these results open the possibility of a future strategy based on anti-immune therapy to treat hypertension which could help to prevent the development of albuminuria and, hence, the progression of kidney damage.N
Potential role of new molecular plasma signatures on cardiovascular risk stratification in asymptomatic individuals
The evaluation of cardiovascular (CV) risk is based on equations derived from epidemiological data in individuals beyond the limits of middle age such as the Framingham and SCORE risk assessments. Lifetime Risk calculator (QRisk®), estimates CV risk throughout a subjects' lifetime, allowing those. A more aggressive and earlier intervention to be identified and offered protection from the consequences of CV and renal disease. The search for molecular profiles in young people that allow a correct stratification of CV risk would be of great interest to adopt preventive therapeutic measures in individuals at high CV risk. To improve the selection of subjects susceptible to intervention with aged between 30-50 years, we have employed a multiple proteomic strategy to search for new markers of early CV disease or reported CV events and to evaluate their relationship with Lifetime Risk. Blood samples from 71 patients were classified into 3 groups according to their CV risk (healthy, with CV risk factors and with a previously reported CV event subjects) and they were analyzed using a high through quantitative proteomics approach. This strategy allowed three different proteomic signatures to be defined, two of which were related to CV stratification and the third one involved markers of organ damage.This work was supported by grants from the Instituto de Salud Carlos III (PI070537, IF08/3667-1, PI11-02239, PI 14/01917, PI11/01401, PI11/02432, PI13/01873, PI13/01746, PI13/01581, PI14/01650, PI14/01841), PT13/0001/0013, PIE13/00051, PIE13/00045, CP09/00229, CP15/00129, IDC Salud (3371/002), the MutuaMadrileña Foundation, the SENEFRO Foundation and FONDOS FEDER (RD06/0014/1015, RD12/0042/0071). Sociedad Española de cardiología para la Investigación Básica 2017. Grant PRB3 (IPT17/0019 - ISCIII-SGEFI / ERDF. These results are in line with the Spanish initiative on the Human Proteome Project.S
Disentangling signatures of selection before and after European colonization in latin Americans
Throughout human evolutionary history, large-scale migrations have led to intermixing (i.e., admixture) between previously separated human groups. Although classical and recent work have shown that studying admixture can yield novel historical insights, the extent to which this process contributed to adaptation remains underexplored. Here, we introduce a novel statistical model, specific to admixed populations, that identifies loci under selection while determining whether the selection likely occurred post-admixture or prior to admixture in one of the ancestral source populations. Through extensive simulations, we show that this method is able to detect selection, even in recently formed admixed populations, and to accurately differentiate between selection occurring in the ancestral or admixed population. We apply this method to genome-wide SNP data of ∼4,000 individuals in five admixed Latin American cohorts from Brazil, Chile, Colombia, Mexico, and Peru. Our approach replicates previous reports of selection in the human leukocyte antigen region that are consistent with selection post-admixture. We also report novel signals of selection in genomic regions spanning 47 genes, reinforcing many of these signals with an alternative, commonly used local-ancestry-inference approach. These signals include several genes involved in immunity, which may reflect responses to endemic pathogens of the Americas and to the challenge of infectious disease brought by European contact. In addition, some of the strongest signals inferred to be under selection in the Native American ancestral groups of modern Latin Americans overlap with genes implicated in energy metabolism phenotypes, plausibly reflecting adaptations to novel dietary sources available in the Americas
Specialized proresolving mediators protect against experimental autoimmune myocarditis by modulating Ca2+ handling and NRF2 activation
Specialized proresolving mediators and, in particular, 5(S), (6)R, 7-trihydroxyheptanoic acid methyl ester (BML-111) emerge as new therapeutic tools to prevent cardiac dysfunction and deleterious cardiac damage associated with myocarditis progression. The cardioprotective role of BML-111 is mainly caused by the prevention of increased oxidative stress and nuclear factor erythroid-derived 2-like 2 (NRF2) down-regulation induced by myocarditis. At the molecular level, BML-111 activates NRF2 signaling, which prevents sarcoplasmic reticulum–adenosine triphosphatase 2A down-regulation and Ca2+ mishandling, and attenuates the cardiac dysfunction and tissue damage induced by myocarditis.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (SAF-2017-84777R), Instituto de Salud Carlos III (ISCIII) (PI17/01093, PI17/01344, and PI20/01482), Sociedad Española de Cardiología, Proyecto Traslacional 2019 and Asociación del Ritmo Cardiaco (SEC, España), Proyecto Asociación Insuficiencia Cardiaca (Trasplante Cardiaco) 2020, Fondo Europeo de Desarrollo Regional, Fondo Social Europeo, and CIBERCV, a network funded by ISCIII, Spanish Ministry of Science, Innovation and Universities (PGC2018-097019-B-I00), Ministerio de Economía, Industria y Competitividad/Agencia Estatal de Investigación 10.13039/501100011033 PID2020-113238RB-I00, PID2019-105600RB-I00, the Instituto de Salud Carlos III (Fondo de Investigación Sanitaria grant PRB3 [PT17/0019/0003-ISCIII-SGEFI/ERDF, ProteoRed]), and “la Caixa” Foundation (project code HR17-00247). The Centro Nacional de Investigaciones Cardiovasculares is supported by the ISCIII, the Ministerio de Ciencia, Innovación y Universidades. Dr Ruiz-Hurtado is Miguel Servet I researcher of ISCIII (CP15/00129 Carlos III Health Institute). Dr Tamayo and R.I. Jaén, and M. Gil-Fernández were or currently are PhD students funded by the Formación de Profesorado Universitario program of the Spanish Ministry of Science, Innovation and Universities (FPU17/06135; FPU16/00827, FPU1901973)
- …