270 research outputs found

    Cross-Lingual Cross-Media Content Linking: Annotations and Joint Representations

    Get PDF
    Dagstuhl Seminar 15201 was conducted on “Cross-Lingual Cross-Media Content Linking: Annotations and Joint Representations”. Participants from around the world participated in the seminar and presented state-of-the-art and ongoing research related to the seminar topic. An executive summary of the seminar, abstracts of the talks from participants and working group discussions are presented in the forthcoming sections

    Immunomagnetic t-lymphocyte depletion (ITLD) of rat bone marrow using OX-19 monoclonal antibody

    Get PDF
    Graft versus host disease (GVHD) may be abrogated and host survival prolonged by in vitro depletion of T lymphocytes from bone marrow (BM) prior to allotransplantation. Using a mouse anti-rat pan T-lymphocyte monoclonal antibody (0×19) bound to monosized, magnetic, polymer beads, T lymphocytes were removed in vitro from normal bone marrow. The removal of the T lymphocytes was confirmed by flow cytometry. Injection of the T-lymphocyte-depleted bone marrow into fully allogeneic rats prevents the induction of GVHD and prolongs host survival. A highly efficient technique of T-lymphocyte depletion using rat bone marrow is described. It involves the binding of OX-19, a MoAb directed against all rat thy-mocytes and mature peripheral T lymphocytes, to monosized, magnetic polymer spheres. Magnetic separation of T lymphocytes after mixing the allogeneic bone marrow with the bead/OX-19 complex provides for a simple, rapid depletion of T lymphocytes from the bone marrow. In vitro studies using flow cytometry and the prevention of GVHD in a fully allogeneic rat bone marrow model have been used to demonstrate the effectiveness of the depletion procedure. © 1989 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    Calibration of TCCON column-averaged CO2: the first aircraft campaign over European TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO2, CH4, N2O, CO and O2 are measured. CO2 is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO2 column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO2 measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellite

    Improving the TROPOMI CO data product: update of the spectroscopic database and destriping of single orbits

    Get PDF
    On 13 October 2017, the Tropospheric Monitoring Instrument (TROPOMI) was launched on the Copernicus Sentinel-5 Precursor satellite in a sun-synchronous orbit. One of the mission's operational data products is the total column concentration of carbon monoxide (CO), which was released to the public in July 2018. Using HITRAN 2008 spectroscopic data with an updated water vapor spectroscopy, the CO data product is compliant with the mission requirement of 10 % precision and 15 % accuracy for single soundings. Comparison with ground-based CO observations of the Total Carbon Column Observing Network (TCCON) show systematic differences of about 6.4 ppb and single orbit observations are superimposed by a significant striping pattern along the flight path exceeding 5 ppb. In this study, we discuss possible improvements of the CO data product. We found that the molecular spectroscopic data used in the retrieval plays a key role for the data quality where the use of the Scientific Exploitation of Operational Missions – Improved Atmospheric Spectroscopy Databases (SEOM-IAS) and the HITRAN 2012 and 2016 releases reduce the bias between TROPOMI and TCCON due to improved CH4 spectroscopy. SEOM-IAS achieves the best spectral fitting quality and reduces the bias between TROPOMI and TCCON to 3.3 ppb while HITRAN 2012 and HITRAN 2016 decrease the bias even further below 1.1 ppb. Here, HITRAN 2012 worsens the fitting quality and furthermore introduces an artificial bias to the TROPOMI CO data product in the tropics caused by the H2O spectroscopic data. Moreover, analyzing one year of TROPOMI CO observations, we identified increased striping patterns by about 16 % percent from November 2017 to November 2018. To mitigate this effect, we discuss two destriping methods applied to the CO data a posteriori. A destriping mask calculated per orbit by median filtering of the data in the cross-track direction significantly improves the data quality. However, still better quality is achieved by a Fourier analysis and filtering of the data, which corrects not only for stripe patterns in cross-track direction but also accounts for the variability of stripes along the flight path

    Calibration of sealed HCl cells used for TCCON instrumental line shape monitoring

    Get PDF
    The TCCON (Total Carbon Column Observing Network) FTIR (Fourier transform infrared) network provides highly accurate observations of greenhouse gas column-averaged dry-air mole fractions. As an important component of TCCON quality assurance, sealed cells filled with approximately 5 mbar of HCl are used for instrumental line shape (ILS) monitoring at all TCCON sites. Here, we introduce a calibration procedure for the HCl cells which employs a refillable, pressure-monitored reference cell filled with C_2H_2. Using this method, we identify variations of HCl purity between the TCCON cells as a non-negligible disturbance. The new calibration procedure introduced here assigns effective pressure values to each individual cell to account for additional broadening of the HCl lines. This approach will improve the consistency of the network by significantly reducing possible station-to-station biases due to inconsistent ILS results from different HCl cells. We demonstrate that the proposed method is accurate enough to turn the ILS uncertainty into an error source of secondary importance from the viewpoint of network consistency

    Simulations of column-averaged CO_2 and CH_4 using the NIES TM with a hybrid sigma-isentropic (σ-θ) vertical coordinate

    Get PDF
    We have developed an improved version of the National Institute for Environmental Studies (NIES) three-dimensional chemical transport model (TM) designed for accurate tracer transport simulations in the stratosphere, using a hybrid sigma-isentropic (σ-θ) vertical coordinate that employs both terrain-following and isentropic parts switched smoothly around the tropopause. The air-ascending rate was derived from the effective heating rate and was used to simulate vertical motion in the isentropic part of the grid (above level 350 K), which was adjusted to fit to the observed age of the air in the stratosphere. Multi-annual simulations were conducted using the NIES TM to evaluate vertical profiles and dry-air column-averaged mole fractions of CO_2 and CH_4. Comparisons with balloon-borne observations over Sanriku (Japan) in 2000–2007 revealed that the tracer transport simulations in the upper troposphere and lower stratosphere are performed with accuracies of ~5% for CH_4 and SF_6, and ~1% for CO_2 compared with the observed volume-mixing ratios. The simulated column-averaged dry air mole fractions of atmospheric carbon dioxide (XCO_2) and methane (XCH_4) were evaluated against daily ground-based high-resolution Fourier Transform Spectrometer (FTS) observations measured at twelve sites of the Total Carbon Column Observing Network (TCCON) (Bialystok, Bremen, Darwin, Garmisch, Izaña, Lamont, Lauder, Orleans, Park Falls, Sodankylä, Tsukuba, and Wollongong) between January 2009 and January 2011. The comparison shows the model's ability to reproduce the site-dependent seasonal cycles as observed by TCCON, with correlation coefficients typically on the order 0.8–0.9 and 0.4–0.8 for XCO_2 and XCH_4, respectively, and mean model biases of ±0.2% and ±0.5%, excluding Sodankylä, where strong biases are found. The ability of the model to capture the tracer total column mole fractions is strongly dependent on the model's ability to reproduce seasonal variations in tracer concentrations in the planetary boundary layer (PBL). We found a marked difference in the model's ability to reproduce near-surface concentrations at sites located some distance from multiple emission sources and where high emissions play a notable role in the tracer's budget. Comparisons with aircraft observations over Surgut (West Siberia), in an area with high emissions of methane from wetlands, show contrasting model performance in the PBL and in the free troposphere. Thus, the PBL is another critical region for simulating the tracer total column mole fractions
    corecore