1,114 research outputs found

    Mutations of the ret protooncogene in German multiple endocrine neoplasia families: Relation between genotype and phenotype.

    Get PDF
    It has been suggested that not only the position but also the nature of the mutations of the ret protooncogene strongly correlate with the clinical manifestation of the multiple endocrine neoplasm type 2 (MEN 2) syndrome. In particular, individuals with a Cys634-Arg substitution should have a greater risk of developing parathyroid disease. We, therefore, analyzed 94 unrelated families from Germany with inherited medullary thyroid carcinoma (MTC) for mutation of the ret protooncogene. In all but 1 of 59 families with MEN 2A, germline mutations in the extracellular domain of the ret protein were found. Some 81% of the MEN 2A mutations affected codon 634. Phenotype-genotype correlations suggested that the prevalence of pheochromocytoma and hyperparathyroidism is significantly higher in families with codon 634 mutations, but there was no correlation with the nature of the mutation. In all but 1 of 27 familial MTC (FMTC) families, mutations were detected in 1 of 4 cysteines in the extracellular domain of the ret protooncogene. Half of the FMTC mutations affected codon 634. Mutations outside of codon 634 occurred more often in FMTC families than in MEN 2A families. In all but 1 of 8 MEN 2B patients, de novo mutations in codon 918 were found. These data confirm the preferential localization of MEN 2-associated mutations and the correlation between disease phenotype and the position of the ret mutation, but there was no correlation between the occurrence of hyperparathyroidism or pheochromocytoma and the nature of the mutation

    A new method of reconstructing very-high-energy gamma-ray spectra: the Template Background Spectrum

    Get PDF
    Very-high-energy (VHE, E>0.1 TeV) gamma-ray emission regions with angular extents comparable to the field-of-view of current imaging air-Cherenkov telescopes (IACT) require additional observations of source-free regions to estimate the background contribution to the energy spectrum. This reduces the effective observation time and deteriorates the sensitivity. A new method of reconstructing spectra from IACT data without the need of additional observations of source-free regions is developed. Its application is not restricted to any specific IACT or data format. On the basis of the template background method, which defines the background in air-shower parameter space, a new spectral reconstruction method from IACT data is developed and studied, the Template Background Spectrum (TBS); TBS is tested on published H.E.S.S. data and H.E.S.S. results. Good agreement is found between VHE gamma-ray spectra reported by the H.E.S.S. collaboration and those re-analysed with TBS. This includes analyses of point-like sources, sources in crowded regions, and of very extended sources down to sources with fluxes of a few percent of the Crab Nebula flux and excess-to-background ratios around 0.1. However, the TBS background normalisation introduces new statistical and systematic errors which are accounted for, but may constitute a limiting case for very faint extended sources. The TBS method enables the spectral reconstruction of data when other methods are hampered or even fail. It does not need dedicated observations of VHE gamma-ray-free regions (e.g. as the On/Off background does) and circumvents known geometrical limitations to which other methods (e.g. the reflected-region background) for reconstructing spectral information of VHE gamma-ray emission regions are prone to; TBS would be, in specific cases, the only feasible way to reconstruct energy spectra.Comment: 18 pages, accepted for publication (Astronomy and Astrophysics

    A Spectacular VHE Gamma-Ray Outburst from PKS 2155-304 in 2006

    Full text link
    Since 2002 the VHE (>100 GeV) gamma-ray flux of the high-frequency peaked BL Lac PKS 2155-304 has been monitored with the High Energy Stereoscopic System (HESS). An extreme gamma-ray outburst was detected in the early hours of July 28, 2006 (MJD 53944). The average flux above 200 GeV observed during this outburst is ~7 times the flux observed from the Crab Nebula above the same threshold. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10^9 solar mass black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.Comment: 4 pages, 3 figures; To appear in the Proceedings of the 30th ICRC (Merida, Mexico

    Electronic Structure of Transition Metals Fe, Ni and Cu in the GW Approximation

    Full text link
    The quasiparticle band structures of 3d transition metals, ferromagnetic Fe, Ni and paramagnetic Cu, are calculated by the GW approximation. The width of occupied 3d valence band, which is overestimated in the LSDA, is in good agreement with experimental observation. However the exchange splitting and satellite in spectra are not reproduced and it is required to go beyond the GW approximation. The effects of static screening and dynamical correlation are discussed in detail in comparison with the results of the static COHSEX approximation. The dynamical screening effects are important for band width narrowing.Comment: 4 pages, 3 figure

    First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula

    Get PDF
    The Vela supernova remnant (SNR) is a complex region containing a number of sources of non-thermal radiation. The inner section of this SNR, within 2 degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from an extended region to the south of the pulsar, within an integration region of radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36' J2000.0). The excess coincides with a region of hard X-ray emission seen by the ROSAT and ASCA satellites. The observed energy spectrum of the source between 550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45 +/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/- 2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17 (stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear measurement of a peak in the spectral energy distribution from a VHE gamma-ray source, likely related to inverse Compton emission. A fit of an Inverse Compton model to the H.E.S.S. spectral energy distribution gives a total energy in non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a distance of 290 parsec to the pulsar. The best fit electron power law index is 2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysics letter

    Observations of Mkn 421 in 2004 with H.E.S.S. at large zenith angles

    Get PDF
    Mkn 421 was observed during a high flux state for nine nights in April and May 2004 with the fully operational High Energy Stereoscopic System (H.E.S.S.) in Namibia. The observations were carried out at zenith angles of 60^\circ--65^\circ, which result in an average energy threshold of 1.5 TeV and a collection area reaching 2~km2^2 at 10~TeV. Roughly 7000 photons from Mkn~421 were accumulated with an average gamma-ray rate of 8 photons/min. The overall significance of the detection exceeds 100 standard deviations. The light-curve of integrated fluxes above 2~TeV shows changes of the diurnal flux up to a factor of 4.3. For nights of high flux, intra-night variability is detected with a decay time of less than 1 hour. The time averaged energy spectrum is curved and is well described by a power-law with a photon index \egamm and an exponential cutoff at \ecut~TeV and an average integral flux above 2~TeV of 3 Crab flux units. Significant variations of the spectral shape are detected with a spectral hardening as the flux increases. Contemporaneous multi-wavelength observations at lower energies (X-rays and gamma-rays above 300\approx 300~GeV) indicate smaller relative variability amplitudes than seen above 2~TeV during high flux state observed in April 2004.Comment: 5 pages, 4 figures, published in A&

    Discovery of the Binary Pulsar PSR B1259-63 in Very-High-Energy Gamma Rays around Periastron with H.E.S.S

    Get PDF
    We report the discovery of very-high-energy (VHE) gamma-ray emission of the binary system PSR B1259-63/SS 2883 of a radio pulsar orbiting a massive, luminous Be star in a highly eccentric orbit. The observations around the 2004 periastron passage of the pulsar were performed with the four 13 m Cherenkov telescopes of the H.E.S.S. experiment, recently installed in Namibia and in full operation since December 2003. Between February and June 2004, a gamma-ray signal from the binary system was detected with a total significance above 13 sigma. The flux was found to vary significantly on timescales of days which makes PSR B1259-63 the first variable galactic source of VHE gamma-rays observed so far. Strong emission signals were observed in pre- and post-periastron phases with a flux minimum around periastron, followed by a gradual flux decrease in the months after. The measured time-averaged energy spectrum above a mean threshold energy of 380 GeV can be fitted by a simple power law F_0(E/1 TeV)^-Gamma with a photon index Gamma = 2.7+-0.2_stat+-0.2_sys and flux normalisation F_0 = (1.3+-0.1_stat+-0.3_sys) 10^-12 TeV^-1 cm^-2 s^-1. This detection of VHE gamma-rays provides unambiguous evidence for particle acceleration to multi-TeV energies in the binary system. In combination with coeval observations of the X-ray synchrotron emission by the RXTE and INTEGRAL instruments, and assuming the VHE gamma-ray emission to be produced by the inverse Compton mechanism, the magnetic field strength can be directly estimated to be of the order of 1 G.Comment: 10 pages, 8 figures, accepted in Astronomy and Astrophysics on 2 June 2005, replace: document unchanged, replaced author field in astro-ph entry - authors are all members of the H.E.S.S. collaboration and three additional authors (99+3, see document

    A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7

    Full text link
    We report on a possible association of the recently discovered very high-energy γ\gamma-ray source HESS J1825--137 with the pulsar wind nebula (commonly referred to as G 18.0--0.7) of the 2.1×1042.1\times 10^{4} year old Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a significance of 8.1 σ\sigma in the Galactic Plane survey conducted with the H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula extending to the south of the pulsar. We argue that the observed morphology and TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be associated: the lifetime of TeV emitting electrons is expected to be longer compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in electrons from earlier epochs (when the spin-down power was larger) contributing to the present TeV flux. These electrons are expected to be synchrotron cooled, which explains the observed photon index of 2.4\sim 2.4, and the longer lifetime of TeV emitting electrons naturally explains why the TeV nebula is larger than the X-ray size. Finally, supernova remnant expansion into an inhomogeneous medium is expected to create reverse shocks interacting at different times with the pulsar wind nebula, resulting in the offset X-ray and TeV γ\gamma-ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter
    corecore