542 research outputs found

    The European Large Area ISO Survey II: mid-infrared extragalactic source counts

    Get PDF
    We present preliminary source counts at 6.7um and 15um from the Preliminary Analysis of the European Large Area ISO survey, with limiting flux densities of \~2mJy at 15um & ~1mJy at 6.7um. We separate the stellar contribution from the extragalactic using identifications with APM sources made with the likelihood ratio technique. We quantify the completeness & reliability of our source extraction using (a) repeated observations over small areas, (b) cross-IDs with stars of known spectral type, (c) detections of the PSF wings around bright sources, (d) comparison with independent algorithms. Flux calibration at 15um was performed using stellar IDs; the calibration does not agree with the pre-flight estimates, probably due to effects of detector hysteresis and photometric aperture correction. The 6.7um extragalactic counts are broadly reproduced in the Pearson & Rowan-Robinson model, but the Franceschini et al. (1997) model underpredicts the observed source density by ~0.5-1 dex, though the photometry at 6.7um is still preliminary. At 15um the extragalactic counts are in excellent agreement with the predictions of the Pearson & Rowan-Robinson (1996), Franceschini et al. (1994), Guiderdoni et al. (1997) and the evolving models of Xu et al. (1998), over 7 orders of magnitude in 15um flux density. The counts agree with other estimates from the ISOCAM instrument at overlapping flux densities (Elbaz et al. 1999), provided a consistent flux calibration is used. Luminosity evolution at a rate of (1+z)^3, incorporating mid-IR spectral features, provides a better fit to the 15um differential counts than (1+z)^4 density evolution. No-evolution models are excluded, and implying that below around 10mJy at 15um the source counts become dominated by an evolving cosmological population of dust-shrouded starbursts and/or active galaxies.Comment: MNRAS in press. 14 pages, uses BoxedEPS (included). For more information on the ELAIS project see http://athena.ph.ic.ac.uk

    The ELAIS Deep X-ray Survey

    Full text link
    We present initial follow-up results of the ELAIS Deep X-ray Survey which is being undertaken with the Chandra and XMM-Newton Observatories. 235 X-ray sources are detected in our two 75 ks ACIS-I observations in the well-studied ELAIS N1 and N2 areas. 90% of the X-ray sources are identified optically to R=26 with a median magnitude of R=24. We show that objects which are unresolved optically (i.e. quasars) follow a correlation between their optical and X-ray fluxes, whereas galaxies do not. We also find that the quasars with fainter optical counterparts have harder X-ray spectra, consistent with absorption at both wavebands. Initial spectroscopic follow-up has revealed a large fraction of high-luminosity Type 2 quasars. The prospects for studying the evolution of the host galaxies of X-ray selected Type 2 AGN are considered.Comment: 9 pages, 5 figures, To appear in Proceedings of XXI Moriond Conference: "Galaxy Clusters and the High Redshift Universe Observed in X-rays", edited by D. Neumann, F.Durret, & J. Tran Thanh Va

    Far-infrared spectroscopy of a lensed starburst: a blind redshift from Herschel

    Get PDF
    We report the redshift of HATLAS J132427.0+284452 (hereafter HATLAS J132427), a gravitationally lensed starburst galaxy, the first determined 'blind' by the Herschel Space Observatory. This is achieved via the detection of [C II] consistent with z = 1.68 in a far-infrared spectrum taken with the SPIRE Fourier Transform Spectrometer. We demonstrate that the [C II] redshift is secure via detections of CO J = 2 - 1 and 3 - 2 using the Combined Array for Research in Millimeter-wave Astronomy and the Institut de Radioastronomie Millimetrique's Plateau de Bure Interferometer. The intrinsic properties appear typical of high-redshift starbursts despite the high lensing-amplified fluxes, proving the ability of the FTS to probe this population with the aid of lensing. The blind detection of [C II] demonstrates the potential of the SAFARI imaging spectrometer, proposed for the much more sensitive SPICA mission, to determine redshifts of multiple dusty galaxies simultaneously without the benefit of lensing.Comment: 6 pages, 5 figures, accepted for publication in MNRAS as a Lette

    Proposed identification of Hubble Deep Field submillimeter source HDF 850.1

    Get PDF
    The IRAM interferometer has been used to detect the submm source HDF 850.1 found by Hughes et al. (1998) in the Hubble Deep Field. The flux density measured at 1.3mm is 2.2 mJy, in agreement with the flux density measured at the JCMT. The flux densities and upper limits measured at 3.4, 2.8, 1.3, 0.85, and 0.45 mm show that the emission is from dust. We suggest that the 1.3mm dust source is associated with the optical arc-like feature, 3-593.0, that has a photometric redshift of about 1.7. If HDF 850.1 is at this redshift and unlensed, its spectral energy distribution, combined with that of 3-593.0, matches closely that of the ultraluminous galaxy VII Zw 31. Another possibility is that the dust source may be gravitationally lensed by the elliptical galaxy 3-586.0 at a redshift of 1.Comment: 12 pages, 6 figure

    The extended counterpart of submm source Lockman850.1

    Get PDF
    The IRAM Plateau de Bure mm interferometer and deep K-band imaging have been used to identify the brightest submm source detected in the Lockman field of the UK 8mJy SCUBA survey. The near infrared counterpart is an extended (20-30kpc), clumpy, and extremely red object. The spectral energy distribution suggests it to be a dusty star forming object at a redshift of about 3 (2-4). Its star formation rate and near-infrared properties are consistent with Lockman850.1 being a massive elliptical in formation.Comment: 4 ps/eps figures. To appear in A&

    A search for debris disks in the Herschel-ATLAS

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern Observatory (ESO)Aims. We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods. We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results. We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme.Peer reviewe

    Herschel-ATLAS: The angular correlation function of submillimetre galaxies at high and low redshift

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern ObservatoryWe present measurements of the angular correlation function of galaxies selected from the first field of the H-ATLAS survey. Careful removal of the background from galactic cirrus is essential, and currently dominates the uncertainty in our measurements. For our 250 ÎŒm-selected sample we detect no significant clustering, consistent with the expectation that the 250 ÎŒm-selected sources are mostly normal galaxies at z 1. For our 350 ÎŒm and 500 ÎŒm-selected samples we detect relatively strong clustering with correlation amplitudes A of 0.2 and 1.2 at 1', but with relatively large uncertainties. For samples which preferentially select high redshift galaxies at z~2–3 we detect significant strong clustering, leading to an estimate of r0 ~ 7–11 h-1 Mpc. The slope of our clustering measurements is very steep, ÎŽ ~ 2. The measurements are consistent with the idea that sub-mm sources consist of a low redshift population of normal galaxies and a high redshift population of highly clustered star-bursting galaxies.Peer reviewe
    • 

    corecore