2,159 research outputs found

    Physical processes contributing to harmful algal blooms in Saldanha Bay, South Africa

    Get PDF
    The study synthesises current understanding of the predominant physical processes responsible for the seasonality of harmful algal blooms, notably Alexandrium catenella and Dinophysis spp., in the nearshore environmentof Saldanha Bay on the west coast of South Africa. Saldanha Bay is one of the few naturally sheltered areas on the South African coastline suitable for in situ shellfish farming and is the major site for the productionof black mussel Mytilus galloprovincialis in South Africa. Mussel farming started there in 1985 and the present level of production is some 2 700 tons per annum. Since 1994, disruption of harvesting as a result of the presence of harmful algal species has been a regular late-summer phenomenon. Toxic blooms that are ultimately advected into the bay develop on the continental shelf to the north between 32°S and St Helena Bay, a region characterized by favourable conditions for dinoflagellate growth and circulation patterns that facilitate build-up of intenseblooms during late summer. Offshore dinoflagellate populations are advected shorewards and polewards in response to relaxation of upwelling at the Namaqua cell to the north. Dinoflagellate blooms are advected south from the southern Namaqua shelf during upwelling relaxation. Under such conditions, the gyre south of Elands Bay moves offshore and a barotropic flow past Cape Columbine is established. Evidence suggests that the nearsurface component of the flow occurs as a sudden “flood” event. These dinoflagellate-containing shelf waters are in turn advected into Saldanha Bay when upwelling relaxes, when the density gradient between the bay and the shelf drives surface inflow and bottom water outflow. These flows are reversed with the resumption of upwellingover the shelf, resulting in intrusion and entrainment of bottom water and surface outflow. Entrainment dictates that the bay acts as a net importer of bottom water and net exporter of surface waters over a synoptic cycle. Thissystem of exchange between Saldanha Bay and the shelf curtails the duration and severity of toxic episodes in the bay relative to the shelf

    Fallow bucks attend to vocal cues of motivation and fatigue

    Get PDF
    Breeding vocalizations can provide up-to-date information about callers. During the rut, fallow buck calling rates vary in response to their nearest neighbors, and vocal fatigue is linked to body condition loss. We found that fallow bucks perceive higher calling rates as a greater threat and that bucks were sensitive to declines in the quality of the calls of other males. Over the breeding season, fallow bucks gain information from changing calls to continually assess the condition and motivation of conspecific

    A new family of iron pnictides: BaFeAs2 and BaFeSb2

    Full text link
    We investigate the structural, electronic, and magnetic properties of the hypothetical compound BaFePn2 (Pn = As and Sb), which is isostructural to the parent compound of the high temperature superconductor LaFeAsO1-xFx. Using density functional theory, we show that the Fermi surface, electronic structure and the spin density wave instability of BaFePn2 are very similar to the Fe based superconductors. Additionally, there are very dispersive metallic bands of a spacer Pn layer, which are almost decoupled from FePn layer. Our results show that experimental study of BaFePn2 can test the role of charge and polarization fluctuation, importance of two dimensionality in mechanism of superconductivity.Comment: 4.2 pages, 4 figure

    The Human Posterior Superior Temporal Sulcus Samples Visual Space Differently From Other Face-Selective Regions

    Get PDF
    Neuroimaging studies show that ventral face-selective regions, including the fusiform face area (FFA) and occipital face area (OFA), preferentially respond to faces presented in the contralateral visual field (VF). In the current study we measured the VF response of the face-selective posterior superior temporal sulcus (pSTS). Across 3 functional magnetic resonance imaging experiments, participants viewed face videos presented in different parts of the VF. Consistent with prior results, we observed a contralateral VF bias in bilateral FFA, right OFA (rOFA), and bilateral human motion-selective area MT+. Intriguingly, this contralateral VF bias was absent in the bilateral pSTS. We then delivered transcranial magnetic stimulation (TMS) over right pSTS (rpSTS) and rOFA, while participants matched facial expressions in both hemifields. TMS delivered over the rpSTS disrupted performance in both hemifields, but TMS delivered over the rOFA disrupted performance in the contralateral hemifield only. These converging results demonstrate that the contralateral bias for faces observed in ventral face-selective areas is absent in the pSTS. This difference in VF response is consistent with face processing models proposing 2 functionally distinct pathways. It further suggests that these models should account for differences in interhemispheric connections between the face-selective areas across these 2 pathways

    Introduction to spallation physics and spallation-target design

    Get PDF

    Possible high temperature superconductivity in Ti-doped A-Sc-Fe-As-O (A= Ca, Sr) system

    Full text link
    We report a systematic study on the effect of partial substitution of Sc3+^{3+} by Ti4+^{4+} in Sr2_{2}ScFeAsO3_{3}, Ca2_{2}ScFeAsO3_{3} and Sr3_{3}Sc2_{2}Fe2_{2}As2_{2}O5_{5} on their electrical properties. High level of doping results in an increased carrier concentration and leads to the appearance of superconductivity with the onset of Tc_{c} up to 45 K.Comment: 8 pages, 4 figures, 2 new figure

    Striped antiferromagnetic order and electronic properties of stoichiometric LiFeAs from first-principles calculations

    Full text link
    We investigate the structural, electronic, and magnetic properties of stoichiometric LiFeAs by using state-of-the-arts first-principles method. We find the magnetic ground-state by comparing the total energies among all the possible magnetic orders. Our calculated internal positions of Li and As are in good agreement with experiment. Our results show that stoichiometric LiFeAs has almost the same striped antiferromagnetic spin order as other FeAs-based parent compounds and tetragonal FeSe do, and the experimental fact that no magnetic phase transition has been observed at finite temperature is attributed to the tiny inter-layer spin coupling
    corecore