3,937 research outputs found

    Dynamics of Massive Scalar Fields in dS Space and the dS/CFT Correspondence

    Get PDF
    Global geometric properties of dS space are presented explicitly in various coordinates. A Robertson-Walker like metric is deduced, which is convenient to be used in study of dynamics in dS space. Singularities of wavefunctions of massive scalar fields at boundary are demonstrated. A bulk-boundary propagator is constructed by making use of the solutions of equations of motion. The dS/CFT correspondence and the Strominger's mass bound is shown.Comment: latex, 14 pages and 3 figure

    Renyi Entropies, the Analytic Bootstrap, and 3D Quantum Gravity at Higher Genus

    Get PDF
    We compute the contribution of the vacuum Virasoro representation to the genus-two partition function of an arbitrary CFT with central charge c>1c>1. This is the perturbative pure gravity partition function in three dimensions. We employ a sewing construction, in which the partition function is expressed as a sum of sphere four-point functions of Virasoro vacuum descendants. For this purpose, we develop techniques to efficiently compute correlation functions of holomorphic operators, which by crossing symmetry are determined exactly by a finite number of OPE coefficients; this is an analytic implementation of the conformal bootstrap. Expanding the results in 1/c1/c, corresponding to the semiclassical bulk gravity expansion, we find that---unlike at genus one---the result does not truncate at finite loop order. Our results also allow us to extend earlier work on multiple-interval Renyi entropies and on the partition function in the separating degeneration limit.Comment: 63 pages + ref

    Phantom Energy Accretion by Stringy Charged Black Hole

    Full text link
    We investigate the dynamical behavior of phantom energy near stringy magnetically charged black hole. For this purpose, we derive equations of motion for steady-state spherically symmetric flow of phantom energy onto the stringy magnetically charged black hole. It is found that phantom energy accreting onto black hole decreases its mass. Further, the location of critical points of accretion is explored, which yields mass to charge ratio. This ratio implies that accretion process cannot transform a black hole into an extremal black hole or a naked singularity, hence cosmic censorship hypothesis remains valid here.Comment: 7 pages, no figur

    The Nearby Supernova Factory

    Get PDF
    The Nearby Supernova Factory (SNfactory) is an ambitious project to find and study in detail approximately 300 nearby Type Ia supernovae (SNe~Ia) at redshifts 0.03<z<0.08. This program will provide an exceptional data set of well-studied SNe in the nearby smooth Hubble flow that can be used as calibration for the current and future programs designed to use SNe to measure the cosmological parameters. The first key ingredient for this program is a reliable supply of Hubble-flow SNe systematically discovered in unprecedented numbers using the same techniques as those used in distant SNe searches. In 2002, 35 SNe were found using our test-bed pipeline for automated SN search and discovery. The pipeline uses images from the asteroid search conducted by the Near Earth Asteroid Tracking group at JPL. Improvements in our subtraction techniques and analysis have allowed us to increase our effective SN discovery rate to ~12 SNe/month in 2003.Comment: 7 pages, 3 figures to be published in New Astronomy Review

    Opportunities for future supernova studies of cosmic acceleration

    Full text link
    We investigate the potential of a future supernova dataset, as might be obtained by the proposed SNAP satellite, to discriminate among different ``dark energy'' theories that describe an accelerating Universe. We find that many such models can be distinguished with a fit to the effective pressure-to-density ratio, ww, of this energy. More models can be distinguished when the effective slope, dw/dzdw/dz, of a changing ww is also fit, but only if our knowledge of the current mass density, Ωm\Omega_m, is improved. We investigate the use of ``fitting functions'' to interpret luminosity distance data from supernova searches, and argue in favor of a particular preferred method, which we use in our analysis.Comment: Four pages including figures. Final published version. No significant changes from v

    Cosmology with two compactification scales

    Get PDF
    We consider a (4+d)-dimensional spacetime broken up into a (4-n)-dimensional Minkowski spacetime (where n goes from 1 to 3) and a compact (n+d)-dimensional manifold. At the present time the n compactification radii are of the order of the Universe size, while the other d compactification radii are of the order of the Planck length.Comment: 16 pages, Latex2e, 7 figure

    Some Dynamical Effects of the Cosmological Constant

    Get PDF
    Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigarvity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ≃10−52m−2\Lambda \simeq 10^{-52} m^{-2}) we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc) the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1Mpc or larger however we find that vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the Local Group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.Comment: 5 two column pages, 2 figure

    Carmeli's accelerating universe is spatially flat without dark matter

    Full text link
    Carmeli's 5D brane cosmology has been applied to the expanding accelerating universe and it has been found that the distance redshift relation will fit the data of the high-z supernova teams without the need for dark matter. Also the vacuum energy contribution to gravity indicates that the universe is asymptotically expanding towards a spatially flat state, where the total mass/energy density tends to unity.Comment: 4 pages, 5 figures, accepted for publication in Int. J. Theor. Physics, this paper is based on an invited talk at FFP6, Udine, Italy, Sept 200
    • 

    corecore