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1 Introduction

Three-dimensional gravity has proven to be a fruitful testing ground for our ideas about

holography. Perhaps the most interesting question is whether pure general relativity — a

theory with only metric degrees of freedom — with a negative cosmological constant exists

as a quantum theory in its own right. If this were the case, then one should be able to find

its holographic dual for a given value of GN/RAdS, the Newton constant in AdS units. This

appears to be an extremely difficult problem (see e.g. [1–3]). However, general relativity

exists as a sub-sector of any theory of gravity in three dimensions. From the boundary

point of view, it captures the dynamics of the Virasoro sector of any two-dimensional CFT

with central charge c = 3RAdS/2GN . This semi-microscopic interpretation is unavailable in

higher-dimensional AdS/CFT, where the stress tensor does not generate a closed symmetry

algebra.

This perspective lends a universality to AdS3/CFT2 that underlies, for example, the

matching of the asymptotic symmetry group of anti-de Sitter space to the Virasoro alge-

bra [4] and the matching of BTZ black hole entropy to the Cardy growth of states [5]. These

are features of any theory of three-dimensional gravity, and of any dual CFT. Recent work

has revealed an even richer set of properties of two-dimensional CFTs that admit a large-c

limit and are dual to weakly coupled bulk theories of gravity. These relate to aspects of such

theories’ spectra and thermodynamics [6–10], entanglement [11–19], Virasoro blocks [20–

24], modular geometry [25], and chaotic response to perturbations [26], among others.

Despite this fascinating progress, much remains to be understood about basic conse-

quences of Virasoro symmetry. To this end, in this paper we will focus on the computation

of the partition function of three-dimensional gravity in a universe whose boundary is a

Riemann surface Σg of genus g. Schematically, this should be given by a bulk path integral

over geometries Mg which asymptote to Σg:

Zgrav(Ωg) =

∫
∂Mg=Σg

Dg e−S[g] . (1.1)

This partition function is a function of the conformal structure moduli of the Riemann

surface Σg, denoted Ωg. These partition functions contain vital information about the

theory: for instance, one can recover the correlation functions of a given CFT from its

higher-genus partition functions by pinching handles [27]. Thus, by tuning the moduli Ωg,

one could in principle recover the correlation functions of the boundary CFT.

Equation (1.1) is in general an extremely difficult object to compute. Moreover, it

is not “universal” in the sense described earlier. In particular, in (1.1) we have written

the bulk path integral only over metric degrees of freedom; in more complicated theories
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of gravity more degrees of freedom should be included. The partition function Zgrav(Ωg)

written above is that of the CFT dual to pure gravity at a given value of Newton’s constant,

if it exists. In this paper we will not be interested in the full partition function (1.1), but

rather in an object which is both easier to compute and universal: we will study the

contribution to Zgrav(Ωg) from a single saddle-point geometry Mg, including perturbative

quantum corrections. This restricted partition function maps to the contribution of the

Virasoro sector to the CFT partition function on Σg.

This is easiest to see at genus one. In the semiclassical regime GN � RAdS, the

path integral (1.1) can be recast as a sum over saddle points of the Einstein action with

solid torus topology, along with perturbative corrections. The simplest such saddle point

is thermal AdS3, the Euclidean geometry found by taking empty AdS3 and periodically

identifying in Euclidean time, which contributes to the partition function as

ZTAdS(τ, τ) = |q|−c/12
∞∏
n=2

1

|1− qn|2 , q := e2πiτ . (1.2)

In this expression, we have included not only the classical action of thermal AdS (the factor

of |q|−c/12) but also all of the perturbative quantum corrections which come from loops of

gravitons in thermal AdS. With certain reasonable assumptions, all other saddle points are

simply SL(2,Z) modular transformations of thermal AdS, and the sum over geometries is

a sum over SL(2,Z) transformations of (1.2). A direct calculation of ZTAdS does not yield

a result consistent with an interpretation as a trace of the Hilbert space of a CFT [2, 7].1

Nevertheless, (1.2) does have a natural interpretation as the Virasoro vacuum character

of any CFT with central charge c > 1 and an SL(2,R) × SL(2,R)-invariant ground state.

We note that this object is not modular invariant, which reflects the fact that in (1.2) we

have focused on only one saddle out of the SL(2,Z) family. In the language of Riemann

surfaces, (1.2) is a function not of the conformal structure of the boundary torus, but rather

of the Teichmüller parameter τ .

In the present paper, our goal is to compute the analog of (1.2) at higher genus. Any

theory of AdS3 gravity contains solutions which are handlebodies — solid genus-g geome-

tries — which have the Riemann surface Σg as their conformal boundaries. These solutions

are quotients of Euclidean AdS3, much like thermal AdS. The contribution of a given han-

dlebody to the path integral — including graviton loop corrections — has a universal CFT

interpretation for any value of c, as the contribution of the states in the vacuum represen-

tation to the CFT partition function on Σg. We call this quantity Zvac.
2 Zvac is a function

not just of the conformal structure of Σg, but rather of the Teichmüller parameters that

parametrize the universal cover of the moduli space. In other words, to compute Zvac we

must specify a marking of the Riemann surface Σg that fixes a choice of contractible and

non-contractible cycles of the handlebody (A- and B-cycles, respectively). Thus Zvac is

not invariant under the modular group; a modular-invariant partition function could be

1However, in the quantum regime GN ∼ RAdS, it was argued in [3] that at specific minimal-model values

of c, not only can the sum be performed, but it agrees with the minimal-model partition functions.
2This was called Zfake in [28], and the correspondence with the bulk saddle point partition function was

written as Zfake = Zsaddle.
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obtained only, for example, by summing over bulk saddles that describe the different ways

a boundary Σg can be “filled in” by bulk geometries. One of our goals in this paper will be

to give a direct CFT computation of Zvac, which can then be interpreted gravitationally.

There has been a recent resurgence of interest in higher-genus partition functions of

two-dimensional CFTs. This interest is partly motivated by the study of entanglement

entropies (EEs). The computation of EEs via the replica trick involves evaluating entan-

glement Rényi entropies (EREs), which in turn are equal to certain higher-genus partition

functions. A particularly interesting line of research uses calculations of EREs to test the

Ryu-Takayanagi (RT) classical EE formula and understand the quantum corrections to

it [11, 13–15, 29].

The partition functions relevant for EREs have been computed in holographic CFTs

in two ways: in gravity, by explicitly finding the relevant saddles and evaluating their clas-

sical actions and one-loop determinants, and in field theory, by computing twist-operator

correlators in certain cyclic orbifold CFTs and then expanding the results in powers of 1/c.

In every case where the computation has been carried out on both sides, agreement has

been found. This is a check of our basic understanding of AdS3/CFT2 duality. Further,

in many cases the computation using one technique gives results that are not practically

computable using the other, thereby giving new information about both three-dimensional

gravity and large-c CFTs. For example, by expanding the results of the twist-operator

computation to higher orders in 1/c, one determines higher-loop quantum corrections on

the gravity side that would be exceedingly difficult to obtain by direct computation. These

results hint at a surprising novel structure, which we describe below.

1.1 Summary of results

In this paper we will directly compute Zvac at genus two, for arbitrary values of c > 1,

using CFT techniques. We will use a sewing construction, represented schematically in

figure 1. We start with a Riemann surface Σ that has been constructed by Schottky

uniformization and replace the handles of Σ with a sum over states propagating along

these handles. The result is a weighted sum over four-point functions of local operators on

the sphere. If we were to include all possible operators in this sum, we would obtain the

full, modular-invariant partition function, as a function of the pinching parameters p1 and

p2, that describe the widths of the handles, and a third modulus x, which is the cross-ratio

of the four-point functions on the sphere. The universal contribution Zvac is computed

by summing only over operators in the Virasoro vacuum block. The four-point functions

of these operators are determined completely by conformal Ward identities. Thus Zvac is

in principle completely determined in terms of the central charge. We will compute the

answer perturbatively in p1 and p2 but exactly in x. We will mostly assume that the CFT

has no extended symmetry algebra beyond two copies of Virasoro, although as we will see

in section 5.1.1 it is straightforward to extend our results to higher-spin theories.

Conformal bootstrap methods play an important role in our computation of Zvac, since

our computation requires us to sum over all four-point functions of Virasoro descendants

on the sphere. These correlation functions — and indeed the correlation function of any

family of chiral operators — can be efficiently computed using a holomorphic version of the
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i,j∈Hvac
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Figure 1. A depiction of the sewing construction as applied to Zvac, the contribution of the

Virasoro vacuum representation to a genus-two CFT partition function. The coordinates p1 and

p2 represent the widths of the two handles in a Schottky uniformization of the Riemann surface.

The handles are replaced by a sum over pairwise operator insertions, where we include all Virasoro

descendants of the identity, O ∈ Hvac. This recasts Zvac as a sum of sphere four-point functions,

weighted by powers of p1 and p2. The operators Oi and Oj have holomorphic conformal weights

hi and hj , respectively. A detailed description of the sewing construction is presented in section 4

(see equations. (4.12) and (4.13)).

conformal bootstrap. The essential idea is that these correlation functions can be regarded

as a meromorphic functions on M0,4, the moduli space of four marked points on a sphere,

with poles only when the operators coincide. A meromorphic function on a compact space is

determined entirely by its polar behaviour. For chiral operators of finite conformal dimen-

sion, this polar part is determined by a finite number of three-point function coefficients.

The result is an exact expression for the correlation function in terms of a finite number of

three-point function coefficients. This should be contrasted with the usual approach, where

a four-point function involves a sum over an infinite number of intermediate states, so is

written in terms of an infinite sum of OPE coefficients. Similar ideas have been advanced

in [30–32]. When the chiral operators are Virasoro descendants of the identity, we show

using free bosons that all connected n-point functions have polynomial dependence on c.

This implies that, when expressed in terms of c, bulk scattering of graviton states in AdS3

is purely classical, in analogy to the one-loop exactness of the torus partition function.

Our result for Zvac will hold for a general Riemann surfaces Σ, but for certain values of

the moduli — those corresponding to the so-called replica surface — our results can be used

to compute genus-two EREs. We mainly consider the case of two disjoint intervals in the

vacuum of a CFT; the replica manifold has genus two when n = 3, and is denoted R2,3. Our

results extend previous results in [16, 33], which were obtained from the twist-field four-

point function. Those works employ a short-interval expansion in which the conformally

invariant cross-ratio, which we call y, is taken to be small. The sewing technique is well-

suited to computation to higher orders in y; [33] worked through O(y8), and we extend this

to O(y12). In fact, the authors of [33] found a quite remarkable result: their O(y8) term in

logZvac exhibits a two-loop truncation in the expansion in 1/c at large c.

– 4 –
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To understand why that result is interesting, let us consider the bulk AdS3 inter-

pretation of our results. Our computation of Zvac is not limited to large c; it is a truly

quantum result for the saddle-point partition function for a genus-two handlebody of three-

dimensional pure gravity, applicable even when GN/RAdS is of order one. Expanding our

result at large c is equivalent to making the semiclassical approximation in the bulk. More

precisely, the expansion of the “vacuum free energy,”

Fvac := − logZvac , (1.3)

at small Newton constant (large c) is the loop expansion of three-dimensional AdS gravity:

Fvac =

∞∑
`=0

c1−`Fvac; ` (1.4)

where Fvac; ` denotes an `-loop contribution. In the bulk, no computations have been done

beyond one-loop order. At one loop, there is a closed-form expression for the graviton

handlebody determinant [28, 34]. Our result for Fvac;1 is a computation of this determinant

in a new regime of moduli space, not described by previous computations [15, 28].

What about at higher loops? At genus one, the expansion (1.2) truncates at one-loop

order: higher-loop contributions only renormalize the value of c [2]. It is natural to ask

whether the higher-genus partition function obeys an analogous truncation. Indeed, the

results of [33] imply that that F`>2(R2,3) vanishes through O(y8), perhaps suggesting that

the partition function at genus two truncates at two loops. One motivation for this paper

was to investigate whether this truncation really occurs for the full partition function Zvac.
3

Our conclusion is that the truncation does not occur, and that the cancellation observed

in [33] is an artifact of the small-y expansion. Indeed, we will show that on the replica

manifold R2,3 there are nonzero contributions to the free energy at all orders in the 1/c

expansion. These first appear at O(y12) in the short-interval expansion, explaining why

these corrections were not found in [33].

More generally, we will show that the genus-two partition function Zvac of pure three-

dimensional gravity does not truncate at any order in 1/c. The same is true of pure higher

spin gravity. Explicit contributions to the all-loop terms Fvac; ` are given in section 5.1. To

our knowledge, these are the first all-loop results beyond genus one for a Riemann surface

with three independent moduli. We show that in the regime of small p1 and p2, the only

point in the moduli space at which the loop expansion (1.4) truncates is the separating

degeneration point, at which Σ degenerates into the union of two tori.

3On general grounds, such a truncation might seem to conflict with the pole structure of CFT correlation

functions, regarded as analytic functions of c. Let us make the argument at genus two for concreteness.

In the sewing construction, a genus-two partition function is written as a sum over four-point functions.

The statement of truncation becomes the statement that at each order in the sewing expansion, the total

contribution from all four-point functions truncates at order 1/c. As argued by Zamolodchikov [35], the

conformal block decomposition of a given four-point function contains poles at minimal model values of

c where the exchanged operators become null. Unless these poles cancel against the poles in the other

four-point functions contributing at a given order in the sewing expansion, the partition function will not

truncate in a 1/c expansion. This sort of cancellation at every order in the sewing expansion seems highly

unlikely. Indeed, our computations bear out this conclusion.
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This paper is organized as follows. In section 2 we recall the relationship between

Rényi entropies and higher-genus partition functions, and review the sewing construction

of higher genus partition functions as a weighted sum over sphere-correlation functions.

In section 3 we describe techniques to compute these correlation functions, including an

analytic version of the conformal bootstrap. In section 4 we apply these techniques to

compute Zvac, the contribution to the partition function from the Virasoro descendants, at

genus two. We discuss the large central charge limit of this result in section 5, which allows

us to understand the nature of quantum corrections to the higher-genus partition function

of three-dimensional gravity, as well as applications to Rényi entropies, before concluding

in section 6. Appendices contain details relevant to the sewing construction.

2 Review

In this section we will review some relevant background material, and explain the methodol-

ogy and philosophy behind our computations. In subsection 2.1, we briefly review previous

work on Rényi entropies in the vacuum of 2D CFTs. Using these Rényi entropies as a guide,

we explain how pure 3D quantum gravity naturally computes the universal contribution of

the Virasoro identity block to CFT partition functions on generic Riemann surfaces. Then,

in subsection 2.2, we will explain the sewing construction, which we will apply in section 4

to the computation of higher-genus partition functions.

2.1 Rényi entropies and higher-genus partition functions

Two-dimensional CFTs provide perhaps the simplest arena in which to investigate entan-

glement entropies (EEs) in field theories. In this subsection, we will briefly review some

calculations of these quantities, with particular attention to their dependence on the central

charge c of the theory.

2.1.1 General CFTs

The simplest quantity one can consider in this context is the vacuum EE of a single interval

[u, v] on the line. The corresponding Rényi entropy is given in terms of the partition

function on the surface4 R1,n, which is the plane branched n times over the interval [36]:5

S(n)([u, v]) = − 1

n− 1
lnZ(R1,n) . (2.1)

This partition function is in turn related to the two-point function on the plane of twist

operators in the orbifold theory Cn/Zn (where C is the original CFT) [37]:

Z(R1,n) = 〈σ(u)σ̃(v)〉Cn/Zn . (2.2)

4In general, we will denote the plane branched n times over a set of N intervals by RN,n; this surface

has genus (N − 1)(n− 1).
5The partition function on a genus-zero surface is defined, for a given theory, up to a multiplicative

constant independent of the metric. We are choosing that constant so that Z(C) = 1; otherwise the

argument of the logarithm in (2.1) would be Z(R1,n)/Z(C)n.

– 6 –
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It will be convenient to work in terms of the free energy, which we define on any surface X as

F (X) := − lnZ(X) . (2.3)

The free energy F (R1,n) is proportional to c and otherwise independent of the theory: the

surface R1,n has genus zero, so the free energy is given entirely by a Liouville action mul-

tiplied by c; alternatively, in the twist-operator language, the two-point function depends

only on their dimension, which is proportional to c. The result is [36, 37]

S(n)([u, v]) =
c

6

(
1 +

1

n

)
ln

(
v − u
ε

)
, (2.4)

where ε is an ultraviolet-cutoff length scale; its presence reflects the divergence in the par-

tition function due to the presence of conical singularities in R1,n. This gives rise to the

well-known formula for the EE [36, 37],

S([u, v]) = S(1)([u, v]) =
c

3
ln

(
v − u
ε

)
. (2.5)

The above result is easily generalized to the case of a single interval on a circle at

zero temperature or on the line at finite temperature [37]. In either case, the branched

cover surface continues to have genus zero, and therefore the EREs and EE continue to

be proportional to c. The simplest cases where higher-genus partition functions appear

are a single interval on the circle at finite temperature and two intervals on the line at

zero temperature; the corresponding branched-cover surfaces have genera n and n − 1,

respectively. This implies that the ERE will depend on the full operator content of the

CFT, not just its central charge [38]. In rest of this subsection we will focus on the two-

interval case, which is the best-studied one.

For two intervals [u1, v1] ∪ [u2, v2], it is convenient to work with the mutual (Rényi)

information, which is ultraviolet-finite, hence conformally invariant and dependent only on

the cross-ratio y of the four endpoints [38]:6

I(n)(y) := S(n)([u1, v1]) +S(n)([u2, v2])−S(n)([u1, v1]∪ [u2, v2]) , y :=
(v1 − u1)(v2 − u2)

(u2 − u1)(v2 − v1)
.

(2.6)

We have

I(n)(y) =
1

1− nF (R2,n) + subtractions . (2.7)

The subtractions, given by the EREs of the individual intervals, soak up the divergences in

F (R2,n), leaving an unambiguous finite value for I(n)(y). The partition function on R2,n

can be expressed as a four-point function of twist operators in the orbifold theory:

Z(R2,n) = 〈σ(u1)σ̃(v1)σ(u2)σ̃(v2)〉Cn/Zn . (2.8)

The surface R2,n has genus n−1, so the partition function depends on the full operator

content of the theory and not just its central charge. However, it contains a universal

6In the literature, this cross-ratio is often denoted x; however, we will use x for a different cross-ratio in

what follows.
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1

2

n

u2 v2u1 v1

A

B

Figure 2. The n-sheeted replica surface R2,n, which is the branched covering surface of the plane

with two intervals and has genus n− 1. On each sheet, there is a cycle separating the two intervals

called the A-cycle, and another cycle encircling the two points v1 and u2, called the B-cycle. There

are n− 1 independent cycles of each type.

contribution that only depends on c. To define this part, it is useful to first set up some

notation regarding the topology of the surface R2,n.

A useful basis of cycles on R2,n can be described as follows. On each sheet, there is a

cycle that separates the two intervals. We will call these A-cycles. The sum of all n of them

is trivial, so there are n−1 independent ones. There are also cycles which encircle the points

v1, u2, crossing each cut once, which we call B-cycles; again, there are n − 1 independent

ones. (See figure 2.) The A-cycles intersect the B-cycles but not themselves, and vice versa.

(Linear combinations Ai, Bj can be constructed with intersection numbers Ai · Bj = δij ,

but this will not be necessary for our purposes.) It is also useful to visualize the surface

R2,n as two spheres connected by n tubes. This can be related to the branched cover by

cutting each sheet along a small ellipse surrounding the interval [u1, v1] and another one

surrounding the interval [u2, v2]. Each interval then becomes a sphere with n holes, while

each sheet becomes a tube connecting one sphere to the other. Each A-cycle wraps a tube,

while each B-cycle runs along one tube and back along another. (See figure 3.) R2,n enjoys

a Zn “replica symmetry”, which cyclically permutes the sheets, and hence also the tubes.

The universal part of Z(R2,n) to which we alluded above is defined as the contribution

in which only Virasoro descendants of the vacuum appear on the A-cycles. In other words,

if for any circle C we define Pvac(C) as the projection operator onto the conformal family

of the vacuum of the Hilbert space of C on C, then we define the vacuum partition function

as the path integral with projectors Pvac(A1) · · ·Pvac(An−1) inserted:

Zvac(R2,n) := 〈Pvac(A1) · · ·Pvac(An−1)〉Z(R2,n) . (2.9)

With only vacuum descendants on A1, . . . , An−1, the cycle An (which is a linear combination

of the others) is automatically guaranteed to host only such descendants as well.7 Note

7To see this, cut along all n A-cycles, leaving two sphere n-point functions (on the left and right spheres

– 8 –
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A

n

B

1

2

Figure 3. An alternate depiction of the surface R2,n in figure 2. R2,n can be visualized as two

spheres connected by n tubes. The two spheres, one for each interval, are made by cutting small

holes around each pair of intervals on all n sheets. The tubes connecting the holes on the two

spheres represent the sheets. In this picture, the A-cycles wrap the n tubes and the B-cycles run

through two different tubes.

that the choice of representative of any given cycle Ai is unimportant; any representative

can be mapped to any other by a holomorphic diffeomorphism, which acts on the Hilbert

space by the Virasoro group, under which conformal families don’t mix. In the orbifold

description, the vacuum partition function can be written

Zvac(R2,n) = 〈σ(u1)σ̃(v1)Porb vac(A)σ(u2)σ̃(v2)〉Cn/Zn , (2.10)

where Porb vac is the projector onto states of Cn/Zn composed of descendants of the identity

of C,8 and A is a circle enclosing [u1, v1]. Note that, unlike the full partition function,

Zvac(R2,n) is not a modular invariant quantity, due to the distinguished role of the A-cycles.

As we will see in the next subsection, the vacuum partition function is particularly

well-studied in the context of holographic and other large-c CFTs.

2.1.2 Large-c CFTs

We are interested in families of CFTs, such as holographic ones, that admit a large-c limit.

In such theories, all of these quantities — the free energies, entanglement (Rényi) entropies,

and mutual (Rényi) informations — admit an expansion in 1/c starting at order c. We

thus write, for example,

I(n)(y) =
∞∑
`=0

c1−`I
(n)
` (y) , F (R2,n) =

∞∑
`=0

c1−`F`(R2,n) . (2.11)

of figure 3). For each n-point function, n − 1 of the operators correspond to vacuum descendants. As a

result, if the nth one is not a vacuum descendant, then the n-point function vanishes, and hence does not

contribute to the vacuum partition function.
8This set of states includes more than just Virasoro descendants of the vacuum of Cn/Zn. Rather, it

includes all descendants of the vacuum under the larger algebra consisting of (Zn-symmetric) products of

Virasoro generators acting on the different copies of C.
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In a holographic CFT, the parameter 1/c is proportional to the bulk Newton constant,

1

c
=

2GN
3RAdS

, (2.12)

so the expansion in 1/c is a loop expansion in the bulk (hence the index `).

From a CFT perspective, the loop corrections (` ≥ 1) are “cleaner” than the classical

one (` = 0), in the following sense. First, F`≥1 is unambiguous, since the scheme dependence

of the free energy is due to the Weyl anomaly, which is proportional to the central charge.

Second, it is finite even on a singular surface such as R2,n, since the Weyl transformation

that smoothes out those conical singularities shifts the free energy by c times a Liouville

action. Third, since it is Weyl-invariant, it depends only on the complex structure of R2,n,

hence only on the cross-ratio y, not the positions of the endpoints themselves. Finally,

since the subtractions present in (2.7) are proportional to c, we simply have

I
(n)
` (y) =

1

1− nF`(R2,n) for ` ≥ 1 . (2.13)

These properties will all be useful when we study the loop corrections below.

The RT formula makes a strikingly simple prediction for the classical part of the mutual

information [11]:

I0(y) =

{
0 , y ≤ 1/2

(1/3) ln(y/(1− y)) y ≥ 1/2
. (2.14)

It is interesting that this formula does not depend on the field content or other specifics of

the dual theory. On the other hand, the loop corrections do depend on the field content,

although they always include certain “universal” terms due to the gravitational sector, as

we will explain below.

Significant effort has gone into testing the prediction (2.14) and computing the loop

corrections using the replica trick. Two strategies have been followed to compute the

relevant free energies. The first is to find the dominant gravitational saddle point whose

conformal boundary is R2,n; the terms in the 1/c expansion of F (R2,n) are then given by

the classical action, the one-loop determinant of the fields about that background, and so

on. The second strategy is to compute the four-point function of twist fields (2.8) using

CFT techniques such as the conformal-block decomposition. The RT prediction for the

classical part was successfully confirmed, modulo some assumptions, by both methods,

in [14] and [13] respectively.

Consider the calculation of F0(R2,n), starting with the gravity method. In [14], two

gravitational saddles were constructed with conformal boundary R2,n. Both are handle-

bodies; in one, which we will call HA, the A-cycles are contractible, while in the other, HB,

the B-cycles are contractible. HA has a smaller action for y < 1/2 and HB for y > 1/2.

These are the only solutions that preserve the replica symmetry of R2,n, and are also be-

lieved to be the only type of solution that exists uniformly for all n. Their actions are

analytic functions of n; when continued down to n = 1, they reproduce precisely the RT

prediction (2.14) for the EE. In [13], an analysis of conformal blocks in the Cn/Zn theory

at large c — again, imposing the replica symmetry — led to the same result.
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An important subtlety regarding these calculations is as follows. For general n and y,

it is not clear whether the dominant gravitational saddle is always HA or HB, and therefore

whether their actions indeed give the correct free energy and Rényi entropy.9 However, for

small y, the tubes are very thin (as we will see in section 5.2 when we discuss the period

matrix for R2,n), so the dominant saddle must indeed be the handlebody that fills them in,

namely HA. This is important for our purposes because the calculations we will describe

from here on will always be done in an expansion in y, and therefore we can safely ignore

this subtlety and assume that HA is the dominant saddle.

We now turn to the one-loop correction to the free energy, F1(R2,n), which as noted

in (2.13) directly gives the one-loop correction to the mutual Rényi information, I
(n)
1 (y).

F1(R2,n) is proportional to the sum of the logs of the fluctuation determinants of all the

fields propagating on the relevant gravitational saddle. In any theory of gravity, this

includes the metric fluctuations. Their one-loop determinant on the handlebody HA was

computed in an expansion in y to order y8 for all n in [15], and to order y10 for n = 1 in [39].

As we will now explain, this contribution to the free energy is simply the O(c0) part of

the vacuum free energy Zvac(R2,n) defined in the previous subsection. In fact, more gener-

ally, consider the partition function obtained from the classical action and loop corrections

to all orders of perturbative pure gravity on HA. We will now argue that this quantity is

precisely Zvac(R2,n). In the genus-one case, this was shown in [2], and we can adopt their

argument here. In a Hilbert-space interpretation, we can choose to think of the A-cycles

as defining a spatial direction and the B-cycles a (Euclidean) time direction. This is con-

venient because the states defined on the A-cycles are perturbative pure quantum gravity

states on an AdS3 background, since the A-cycles are contractible and the handlebody is

locally Euclidean AdS3. Since the creation operators for metric fluctuations are, from the

CFT viewpoint, Virasoro generators, these states are thus Virasoro descendants of the vac-

uum. Thus the perturbative pure gravity partition function on HA is precisely Zvac(R2,n).

The exact correspondence between the perturbative quantum gravity partition function

and the universal identity block contributions to CFT partition functions was articulated

and tested in [28]. We will extend that work in section 5.3.

We now return to computation of Rényi entropies specifically. Having established the

CFT interpretation of Zvac(R2,n), we can see that reproducing the results of [15, 39] using

the twist-field method requires including only descendants of the vacuum as intermediate

states in the conformal-block decomposition of the 4-point function (2.8), since the inter-

mediate states are precisely those living on the A-cycles. More precisely, one should include

states of the orbifold theory Cn/Zn that are made up of descendants of the vacuum of C;
these include more than just the descendants of the vacuum of Cn/Zn. It is easy to see

that the term of order yh in I(n)(y) is given by descendants at level h.

These calculations were carried out to order y8 by Chen et al. in [33]. Expanding

their result in powers of 1/c, the one-loop (order c0) term matched the bulk metric one-

loop determinant computed earlier in [15]. Their c1−` term started at order y2`+2, so

9Even if this is not the case, one can argue that these are the relevant saddles to consider for the purposes

of analytically continuing the ERE down to n = 1 to find the EE.
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their results could access ` ≤ 3. In other words, they not only reproduced the one-loop

determinant, but effectively computed two-loop and three-loop free energies, which would

presumably be quite challenging from a direct bulk perturbative calculation. The coefficient

at each order in 1/c and y is a rational function of n. We will not reproduce these rather

complicated functions here for general n. However, let us note the following pattern in the

n-dependence observed by [33]:

Fvac,`(R2,n) = (n− 1)(n− 2) · · · (n− `)
(

8∑
m=2`+2

αm,`(n)ym

)
+O(y9) . (2.15)

The αm,`(n) are functions of n; some of them have zeroes at positive n, but none of these

zeroes coincide, unlike those shown in (2.15).

There are some notable features of this formula. First, Fvac; `≥1(R2,n) carries a factor

of n−1. The fact that it vanishes at n = 1 can be understood from the fact that the genus-

zero free energy is given entirely by a Liouville action multiplied by c; it is also necessary,

given (2.13), for the mutual Rényi information to have a smooth limit as n → 1. Second,

Fvac; `≥2(R2,n) carries an overall factor of n− 2. The fact that it vanishes at n = 2 can be

understood from the fact that the contribution of the identity family to the genus-one free

energy is one-loop exact: aside from a classical (order-c) part, it is given by − lnχvac(y),

where χvac(y) is the character of the identity family, which is independent of c.

Perhaps surprisingly, the y8 term of Fvac; 3(R2,n) computed by Chen et al. carries an

overall factor of n− 3. (Recall that [33] only computed through O(y8) in the y-expansion.)

If the pattern (2.15) were to hold to all orders in y, this would imply a truncation in the loop

expansion around handlebodies asymptotic to R2,n with appropriate cycles contractible.

On this basis, Chen et al. were led to suggest that the genus-g free energy might be g-loop

exact for all g, at least for the replica manifolds RN,n. One might even wonder whether

this could be true for all genus-g manifolds. One of the main purposes of this paper is to

test this intriguing idea. To do this, we will calculate Zvac on generic genus-two Riemann

surfaces, Σ, using a different technique that we describe now; this complementary approach

will provide a gateway to applications to Rényi entropy and 3D quantum gravity.

2.2 Vacuum amplitudes from sewing

In section 4, we will compute Zvac via the sewing construction. We heuristically explain

this method here with the help of figure 4; the method applies to computation of the full

partition function Z of C, but can be specialized to computation of Zvac. The basic idea is

to replace each handle of Σ by a sum over local operator insertions at its ends. This frames

the computation of Z as a weighted sum of sphere four-point functions. As stressed earlier

in this section, computing Zvac as opposed to the full partition function of C means that we

only allow Virasoro vacuum descendants to propagate along the handles. This construction

is perturbative in the width of the handles. There are many parameterizations of a given

surface Σ; we use the Schottky construction, which forms Σ as a quotient of the Riemann

sphere by a discrete subgroup of PSL(2,C), the Möbius group. The genus-two Schottky

space is parameterized by coordinates {p1, p2, x}. Roughly speaking, these describe the
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Z
0

∞ x

1

p
1

p
2

p
1

hi

p
2

hj∑
i,j

 (∞)ie O.  (x)je O.

 (0)ie O.  (1)je O.

Figure 4. A picture of the sewing approach to computing a genus-two partition function, Z. The

mechanism was explained in figure 1. To compute Z rather than Zvac, one simply lets the sum run

over all operators in the CFT Hilbert space.

width of the two handles and the sphere coordinate of the lone endpoint not fixed by

conformal symmetry, respectively. The computation of Zvac is then a double power series

in p1 and p2, where the powers are the left-moving conformal weights of the operators

inserted at the endpoints.

In order to make eventual contact with Rényi entropies and the work of [28], we will

also need to express Zvac in terms of the period matrix of Σ, denoted Ω. That is, we

need to perform the coordinate map {p1, p2, x} 7→ Ω. This is known in closed form, but is

complicated (see, e.g., [28, 40]). If we define multiplicative periods

qij := e2πiΩij (2.16)

then qij admits a power series in p1 and p2 of the following form:

q11 = p1

∞∑
n,m=0

pn1p
m
2

n+m∑
r=−n−m

c(n,m, |r|)xr,

q12 = x+ x
∞∑

n,m=1

pn1p
m
2

n+m∑
r=−n−m

d(n,m, r)xr

q22 = q11(p1 ↔ p2) .

(2.17)

The c(n,m, |r|) and d(n,m, r) = d(m,n, r) are coefficients given in appendix E of [40]

through m = n = 7.

Thus, in order to compute Zvac via sewing, we must compute four-point functions of

operators in the Virasoro identity representation. We turn to this now, by way of the more

general subject of computing four-point functions of arbitrary holomorphic operators.

3 Four-point functions and the analytic bootstrap

In this section, which may be read independently of the rest of the paper, we discuss

methods for computing correlators in 2D CFTs. We will focus on four-point functions.
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A standard way to compute a four-point function is to do an OPE expansion of pairs of

operators. This yields a power series in the cross-ratio x of the four points. However, we

wish to calculate the correlator at finite values of x. We will describe two methods to do

this. The first, described in subsection 3.2, is via direct manipulation of operator modes,

and may be familiar to CFT practitioners. The second, described in subsection 3.3, is

an analytic realization of the conformal bootstrap that applies specifically to correlators of

only holomorphic (or only anti-holomorphic) operators. The upshot is that the combination

of holomorphy with fundamental properties of the OPE and crossing symmetry yields a

result that is determined by a finite number of OPE coefficients. In the case that all four

operators have identical holomorphic dimensions, the solution of crossing symmetry leads

to an especially simple algorithm.

Before turning to those methods, we first describe a simple approach that applies

specifically to correlators of descendants of the identity, and use the results to discuss the

powers of the central charge c that appear in such correlators.

3.1 Free bosons and powers of c

As explained in subsection 2.2 (and illustrated in figure 1), Zvac, the universal part of the

genus-two partition function, can be constructed from four-point functions on the plane of

descendants of the identity. In this subsection, we will discuss general properties of such

correlators.

The first property to note is that they are independent of the rest of the field content

of the theory, and depend only on its central charge. This follows from the fact that the

identity Verma module is closed under fusion. Since in this paper we are particularly

interested in the powers of c that appear in Zvac, in this subsection we will focus on

the question of what powers of c can appear in such correlators. We will first use a

simple counting argument in a free field theory to show that the powers of c are highly

constrained. In particular, if one thinks of 1/c as a coupling constant, then it appears

that these correlators are tree-level exact. We will relate this classicality to the fact that

the sphere partition function, for any CFT, has a particularly simple c-dependence, and

then discuss its bulk interpretation for holographic CFTs. Finally, we will discuss the

generalizations of these statements at higher genus.

The fact that correlators of descendants of the identity are independent of the theory,

except its central charge, implies that we can compute them in any convenient theory with

a variable central charge. One simple choice is the theory of c free bosons; by writing the

relevant operators in terms of elementary fields, it is in principle straightforward to compute

their correlators using free-field Wick contractions. This procedure is fairly tractable for

calculating, for example, the four-point function of the stress tensor, but it rapidly becomes

unwieldy when applied to higher-point functions or higher-level descendants, and for these

calculations the methods described in the following subsections are far more efficient.

Nonetheless, the free-boson method gives a fast way to answer the important question

of what powers of c appear in a given correlator. For example, the stress tensor is

T = −1

2

c∑
µ=1

: ∂Xµ∂Xµ : . (3.1)
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An m-point function of stress tensors 〈T (z1) · · ·T (zm)〉 includes indices µ1, . . . , µm. The

2m X fields appearing can be contracted in various ways, linking the different T ’s, and

therefore the different µ’s, to each other. For example, a contraction between Xµ1 and Xµ2

leads to a factor of δµ1µ2 . In the connected part of the correlator, they are all linked in one

group, so a non-zero contribution occurs only when all the µ are equal: µ1 = · · · = µm.

Hence the connected part of the correlator is linear in c, independent of m. Disconnected

parts give higher powers of c; for example, the stress tensor four-point function has a term

quadratic in c, from contractions in which the T are linked in two separate pairs (see (3.8)

for the explicit form).

All descendants of the identity can be written as normal-ordered products of derivatives

of stress tensors. The connected part of any correlator — regardless of the number and

type of operator — again comes from terms in which all the µ’s are equal, and is therefore

again linear in c. This also follows from the fact that the generating function for connected

correlators of the stress tensor is the sphere free energy as a functional of the metric, which

is simply c times the Liouville action. Thus, if we think of 1/c as playing the role of ~,

any CFT on the sphere is purely classical in this sector, in other words its correlators are

effectively given entirely by tree-level contributions. To translate this into the usual field-

theory language, if we normalize T by a factor of c−1/2 (so that its two-point function is

1), then a connected correlator with a total of P factors of T is proportional to c1−P/2, just

like a tree-level diagram with P external legs in a field theory with coupling constant 1/c.

We now turn to holographic theories, where 1/c ∼ GN is indeed the bulk coupling con-

stant. An operator made of p stress tensors corresponds to a state containing p gravitons.

This again leads to c1−P/2 for a tree-level bulk process involving a total of P gravitons.

From this point of view, the absence of loop corrections may seem mysterious, given that

there certainly exist Witten diagrams in the bulk containing loops, which make non-zero

contributions to such a correlator. However, in 3D gravity, all terms in the effective action

which depend only on the metric (even those generated by loops of other fields) can be

absorbed in the Einstein-Hilbert term [41]. Hence, the full quantum effective action for the

metric is simply the classical action, with a renormalized value of the Newton constant.

Since it is the renormalized Newton constant that enters in the relation 1/c = 2GN/3RAdS,

when working in terms of c, the theory appears to be entirely classical.10

The arguments above, both in the field theory and in the bulk, depend crucially on

the fact that we are working on the plane (or, more generally, on the sphere with any

metric). On surfaces with non-zero genus, as we recalled in subsection 2.1, the free energy

(or effective action) includes higher powers of 1/c, and these higher-order terms depend on

the full operator content of the theory. So one would not expect correlators to be purely

classical. Similarly, from a bulk point of view, gravitons and other particles can propagate

in loops that wrap non-trivial cycles of the bulk, giving corrections that cannot be captured

by a local effective action.

10This property is not directly related to the absence of propagating degrees of freedom in pure 3D

gravity. To demonstrate this, one can consider the correlator of four spin-s currents with s > 2. As we

will show by example later in section 3.3.2 (see (3.41)–(3.42)), these correlators do not truncate in a 1/c

expansion. This implies a non-trivial loop expansion for bulk four-point scattering of spin-s gauge fields in

pure 3D higher spin gravity, even though these theories also lack propagating modes.
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Nonetheless, as noted below (2.15), at genus one, the vacuum free energy Fvac(T
2) =

− lnZvac(T
2) does have the special property that it is one-loop exact, in other words

contains only terms linear and constant in c (in any CFT). Zvac(T
2) is defined as the path

integral with the insertion of the operator Pvac(A) that projects onto vacuum descendants

on some fundamental cycle A of the torus. Derivatives of the free energy with respect to

the metric give connected correlators of the form 〈Pvac(A)O1O2 · · ·〉con, where the Oi are

descendants of the identity. Such correlators are therefore also one-loop exact (contain

only terms linear and constant in c). We will confirm this property by explicit calculation

in subsection 4.2 below.

3.2 Operator modes

To begin, we will compute vacuum correlators of the form

〈O(∞)T (1)T (z)O(0)〉 (3.2)

where 〈·〉 := 〈0| · |0〉. The operator O is allowed to be an arbitrary, non-holomorphic

operator, not necessarily primary or quasi-primary. As is conventional, we leave its anti-

holomorphic dependence implicit in what follows. We define mode expansions

T (z) =
∑
n∈Z

Ln
zn+2

, O(z) =
∑
n∈Z

On
zn+h

(3.3)

where the stress tensor modes obey the Virasoro algebra,

[Lm, Ln] = (m− n)Lm+n +
c

12
n(n2 − 1)δm+n,0 . (3.4)

In terms of modes, the four-point function is

〈O(∞)T (1)T (z)O(0)〉 = z−2
∑
n∈Z

z−n〈OhL−nLnO−h〉 . (3.5)

To proceed, we break up the sum into the n = 0 mode term, and two sums over

positive and negative integers (denoted Z+ and Z−, respectively). Using the fact that

L0O−h|0〉 = hO−h|0〉, the n = 0 mode contributes a term z−2h2NO, where NO = 〈OhO−h〉
is the norm of O. Using the Virasoro algebra, and relabeling n→ −n, we can rewrite the

sum over Z− in terms of a sum over Z+ as

∑
n∈Z−

z−n〈OhL−nLnO−h〉=
∑
n∈Z+

zn
(
〈OhL−nLnO−h〉+

(
2nh+

c

12
n(n2 − 1)

)
NO
)

(3.6)

=
∑
n∈Z+

zn〈OhL−nLnO−h〉+

(
c

2

z2

(1− z)4
+ 2h

z

(1− z)2

)
NO .

The quantity in angle brackets is simply the squared norm ||LnO−h|0〉||2.

There is a further simplification of this sum: it truncates on account of vacuum invari-

ance. Suppose O is a level N descendant of a primary field O′ of holomorphic dimension
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H = h−N . ThenO−h can be written as a linear combination of “lexicographically ordered”

operators,

L−n1 · · ·L−nkO′−H (3.7)

where n1 ≥ n2 ≥ . . . ≥ nk and N =
∑k

i=1 ni. This implies that the sum in (3.6) truncates

at n = N , because LnO−h|0〉 = 0 for n > N by definition of a primary.

Taking this into account and adding (3.6) to the other pieces, the full correlator is

〈O(∞)T (1)T (z)O(0)〉 =

z−2

(
N∑
n=1

(zn + z−n)〈OhL−nLnO−h〉+

(
c

2

z2

(1− z)4
+ 2h

z

(1− z)2
+ h2

)
NO
)
.

(3.8)

A pleasing feature of the expression in parenthesis is its manifest invariance under z → 1/z,

which is simply invariance under crossing symmetry corresponding to exchange of the two

stress tensors.

If O is quasi-primary, then the n = 1 term of the sum vanishes. If O is primary, the

entire sum vanishes. That leaves us with a very simple expression:

O primary : 〈O(∞)T (1)T (z)O(0)〉 = z−2

(
c

2

z2

(1− z)4
+ 2h

z

(1− z)2
+ h2

)
NO . (3.9)

A useful check of (3.8) is to take O = T , which yields the stress tensor four-point

function. Using the Virasoro algebra to compute 〈L2L−2L2L−2〉 = c2/4, we find

〈T (∞)T (1)T (z)T (0)〉 = z−4

(
c2

4

(
1 + z4 +

z4

(1− z)4

)
+ 2c

(1− z + z2)

(1− z)2

)
. (3.10)

This agrees with previous results (e.g. [42]). We may define the conformal cross-ratio as

x :=
z12z34

z13z24
= z , (3.11)

in which case (3.10) has the correct form of a four-point function as determined by confor-

mal symmetry:

〈T (∞)T (1)T (z)T (0)〉 = z−4F(x) . (3.12)

We will reproduce this result in the next subsection in a more efficient way.11

One can easily generalize this analysis to correlators where T is replaced by a different

operator. For simplicity, we consider the four-point function of two pairs of holomorphic

quasi-primaries Oa and Ob, of dimensions ha and hb, respectively. (Their modes are defined

as in (3.3).) In this case, the resulting expression is

〈Oa(∞)Ob(1)Ob(z)Oa(0)〉 = (3.13)

z−hj

 ha∑
n=1

(zn + z−n)〈Oa
ha
Ob
−nOb

nOa
−ha
〉+ 〈Oa

ha
Ob

0Ob
0Oa
−ha
〉+

∑
n∈Z+

zn〈Oa
ha

[Ob
n,Ob

−n]Oa
−ha
〉


11Following our discussion in subsection 3.1, note that this could be derived for all c from a 3D gravity

computation at large c, by thinking of T as a single-graviton state: the O(c2) part is the free-field Wick

contraction, and the O(c) part is the connected bulk correlator of four gravitons expressed in terms of the

renormalized Newton constant.

– 17 –



J
H
E
P
0
7
(
2
0
1
5
)
0
5
9

To understand why the first sum truncates at n = ha, we need to examine the OPE between

quasi-primaries: in terms of modes,

[Oam,Obn] =
∑
c

CabcP (m,n;ha, hb;hc)Ocm+n +Gabδm+n,0

(
m+ ha − 1

ha + hb − 1

)
. (3.14)

Gab is the Zamolodchikov metric, Oc are also quasi-primary, Cabc are OPE coefficients, and

the P (m,n;ha, hb;hc) are known functions12 encoding the contribution of the full global

conformal family of Oc. All modes Obn with n > −hb annihilate the vacuum. This enables

us to write ObnOa−ha |0〉 = [Obn,Oa−ha ]|0〉 for n > −hb; the OPE (3.14), combined with the

unitarity bound h ≥ 0, ensures that modes with n > ha give vanishing contribution. This

explains the upper bound in (3.13).

Equation (3.13), while compact, is not particularly transparent. Even if Ob is made

of current modes alone, its modes may be given by infinite sums over products of the

Ln, which are difficult to manipulate. More generally, the four-point function appears to

depend on the full holomorphic operator content of the theory, due to the presence of the

commutator [Obn,Ob−n]. In fact, this latter point belies the true structure of the result. We

now demonstrate this explicitly as we turn to a much more powerful method of computation

for correlators of holomorphic operators.

3.3 The holomorphic bootstrap

We will now describe a general method to compute the correlation functions of chiral

operators using crossing symmetry. We will see that any correlation function of chiral

operators which obey a closed operator product algebra may be determined uniquely by a

finite number of three-point function coefficients. This is in contrast to the typical situation,

where the OPE allows us to determine correlation functions only in terms of an infinite sum

over intermediate states. In many cases, such as for the correlation functions of Virasoro

descendants of the identity, this leads to an extremely efficient computational algorithm.

Let us recapitulate our conventions for chiral operators. We make no further reference

to the mode notation of the previous subsection. We will consider a family of chiral

operators Oa(z), with integer dimensions ha, and h̄a = 0. We will take the basis Oa to be

quasi-primaries and assume that the Oa satisfy a closed OPE

Oa(z1)Ob(z2) ∼
∑
c

Cab
c Oc(z2)

zha+hb−hc
12

+ (descendants) (3.15)

The two point functions

〈Oa(z1)Ob(z2)〉 =
Gab

zha+hb
12

(3.16)

and three-point functions

〈Oa(z1)Ob(z2)Oc(z3)〉 =
Cabc

zha+hb−hc
12 zha+hc−hb

13 zhb+hc−ha23

(3.17)

are fixed, up to constants, by conformal invariance.

12See e.g. equation (3.4) of [31]. All P (m,n;ha, hb;hc) are finite in unitary CFTs for operators of finite

dimension.
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3.3.1 Four-point functions: general case

Conformal invariance constrains the four-point function to take the form

〈Oa(z1)Ob(z2)Oc(z3)Od(z4)〉 =

(
1

zha+hb
12 zhc+hd34

(
z24

z14

)hab (z14

z13

)hcd)
Fabcd(x) . (3.18)

where we define the cross ratio x as in (3.11),

x =
z12z34

z13z24
, 1− x =

z14z23

z13z24
. (3.19)

We will use the notation H =
∑

a ha, hab = ha − hb, zab = za − zb, etc.

Our starting point is the observation that the four-point function (3.18) depends an-

alytically on the zi and has poles only when the points zi coincide. Thus Fabcd is a

meromorphic function of x with poles only at x = 0, 1,∞. So Fabcd is a rational function of

x, which is uniquely completely determined (up to a constant piece) by its polar behaviour

at these points. As we will see, this polar behaviour is fixed by only a finite number of

three-point function coefficients.

We begin by considering the expansion of Fabcd near x → 0. This can be found by

inserting the OaOb and OcOd OPE into the four-point function (3.18). The result is a sum

over intermediate operators Oe. The contributions from the descendant states of a given

quasi-primary are given by a rigid (i.e. SL(2,R)) conformal block. The rigid conformal

blocks were written in terms of hypergeometric functions in [35]. The result is

Fabcd(x) =
∑
e

(CabeCcd
e)xheF (he − hab, he + hcd; 2he;x) (3.20)

From this we see that Fabcd is finite as x→ 0. The constant term as x→ 0 is given by the

exchange of the identity operator, so

Fabcd(x) = GabGcd + . . . (3.21)

where . . . denotes terms that vanish as x→ 0.

We now need to determine the polar behaviour near x → 1 and x → ∞. To do

this we will use the transformation properties of the four-point function under crossing

symmetry. The crossing symmetry conditions can be derived by considering how the cor-

relation function (3.18) transforms when the zi are permuted. In particular, let us consider

a permutation π ∈ S4 of four elements. We have

〈Oa(z1)Ob(z2)Oc(z3)Od(z4)〉 = 〈Oπ(a)(zπ(1))Oπ(b)(zπ(2))Oπ(c)(zπ(3))Oπ(d)(zπ(4))〉 (3.22)

This relates Fabcd(x) to Fπ(abcd)(π(x)), where the permutation π acts on the cross-ratio as

π(x) ≡
zπ(13)zπ(24)

zπ(12)zπ(34)
(3.23)

One just needs to determine how the permutation π acts on the prefactor in parenthesis in

equation (3.18). Some permutations have π(x) = x; these give identities for the Fabcd(x)
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with fixed x. One can verify that these identities follow immediately from the confor-

mal block expansion (3.20), using properties of the hypergeometric function identities and

symmetries of the three-point function coefficients. Other permutations act on x, and

give non-trivial information about four-point functions. In particular, the permutations

π = (14) and π = (24) give the crossing symmetry equations

Fabcd(x) = (−1)Hxha+hdFdbca(1/x)

= (−1)Hxhc+hd(1− x)−hc−hbFadcb(1− x)
(3.24)

These crossing equations strongly constrain the allowed form of the three-point function

coefficients. Since Fabcd(x) is finite as x→ 0, we see that Fabcd has a pole of order ha + hd
at x→∞ and a pole of order hb + hc at x→ 1.

We need to understand better the behaviour near these poles. To determine the

behaviour near x→∞ we insert the conformal block expansion (3.20) into the first crossing

symmetry equation to get

Fabcd(x) = (−1)H
∑
e

CdbeCca
exha+hd−heF (he − hdb, he + hca; 2he; 1/x) (3.25)

∼
ha+hd∑
n=1

αnx
n + . . . as x→∞ . (3.26)

Here . . . denotes terms that are finite at x→∞. The important point is that, because the

hypergeometric function is finite as x→∞, the only terms that contribute to the pole are

those with he < ha + hd. In particular, the power series expansion of the hypergeometric

function at x→∞ gives an explicit formula for the αn in terms of the three-point function

coefficients CdbeC
e
ca with he < ha + hd. We find

αn = (−1)H
ha+hd−n∑
he=0

CdbeCca
e (he − hdb)ha+hd−he−n(he + hca)ha+hd−he−n

(ha + hd − he − n)!(2he)ha+hd−he−n
. (3.27)

Similarly, near x→ 1 we have

Fabcd(x)=(−1)H
∑
e

CadeCcb
e(1− x)he−hc−hbF (he−had, he+hcb; 2he; 1−x)xhc+hd

∼
hb+hc∑
n=1

βn(1− x)−n + . . . as x→ 1 .

(3.28)

where . . . denotes terms that are finite as x→ 1. Again, the hypergeometric function has

a simple power series expansion at x → 1, giving an explicit formulas for the coefficients

βn in terms of the three-point function coefficients with he < hb + hc. The formula for the

βn is a bit more complicated than that for αn, since we must expand xhc+hd in powers of

1 − x as well as the hypergeometric function, so we will not write it explicitly. However,

the important point is that there is a completely explicit (albeit complicated) expression

for the βn in terms of the three-point function coefficients CadeCcb
e with he < hb + hc.
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The four-point function Fabcd is now completely fixed. It is the unique rational function

of x which is finite everywhere except at 1 and∞, where its polar behaviour given by (3.26)

and (3.28), and whose value at x = 0 is given by (3.21):

Fabcd(x) = GabGcd +

ha+hd∑
n=1

αnx
n +

hb+hc∑
n=1

βn
[
(1− x)−n − 1

]
. (3.29)

We see that Fabcd depends on a total of H = ha+hb+hc+hd coefficients, αn, βn, which are

determined by combinations of a finite number of three-point function coefficients. This is

a consequence of crossing symmetry applied in a holomorphic setting; for non-holomorphic

operators, there is no simple formula for a four-point function in terms of a finite number

of operators.

This has a remarkable consequence for the conformal bootstrap program, where cross-

ing symmetry is used to place constraints on the three-point function coefficients. This

is especially true for chiral CFTs. In a typical CFT, the bootstrap results in equations

involving an infinite number of three-point function coefficients, which can only be solved

by truncating or approximating the crossing symmetry equations in some way. For a chiral

CFT, the constraints are all written in terms of a finite number of equations. For example,

by comparing (3.20) with the expansion of (3.29) around x = 0 we can obtain explicit

formulas for all of the coefficients CabeCcd
e, for all e, in terms of the coefficients CdbeCca

e

with he < ha + hd and CadeCcb
e with he < hb + hc. Of course, our results also apply to

chiral operators in non-chiral CFTs.

Moreover, we note that (3.29) is not the unique way of writing the four-point function.

In writing (3.18) we chose to separate out a particular combination of zij to define a mero-

morphic function. This choice led to a meromorphic function depending on H coefficients

which were determined by three-point function coefficients CdbeCca
e with he < ha + hd

and CadeCcb
e with he < hb + hc. Other ways of separating out a meromorphic function

will lead to different expressions which in some cases may be more useful. For example

one particular interesting way of imposing the crossing symmetry relations is to write the

four-point function as

Fabcd(x)

z
ha+hb−H/3
12 z

ha+hc−H/3
13 z

ha+hd−H/3
14 z

hb+hc−H/3
23 z

hb+hd−H/3
24 z

hc+hd−H/3
34

(3.30)

where

Fabcd(x) = xH/3(1− x)h/3−hb−hcFabcd(x) (3.31)

The function Fabcd is convenient because it treats the four points democratically — which

makes the crossing symmetry equations very simple — but does so at the price of introduc-

ing a branch cut in Fabcd coming from the fractional powers of H/3. Fabcd has singularities

of order H/3 at each of the three points x = 0, 1,∞; the crossing equations determine Fabcd
to be

Fabcd(x) =

bH/3c∑
n=0

(
anx

n−H/3 + bnx
H/3−n + cn(1− x)n−H/3

)
(3.32)
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where the an, bn, cn are determined by the three-point functions of operators with he ≤
bH/3c. Note that, since n = 0, . . . , bH/3c we now have 3bH/3 + 1c coefficients to deter-

mine. It is reasonably straightforward, though tedious, to write explicit expressions for

these coefficients in terms of the three-point functions. The advantage of this approach is

that it will, in principle, require the computation of fewer three-point function coefficients.

For example, if the number of operators in the chiral algebra increases rapidly with di-

mension (as in the case of the Virasoro algebra) then this expansion would be much more

efficient.

3.3.2 Four-point functions: identical operators

Let us now simplify to the case where the four operators Oa are identical operators O of

weight h, which is of interest for our computation of the higher genus partition function.

In this case the above procedure simplifies considerably. The four-point function F(x) =

Fabcd(x) is a meromorphic function with poles only at x = 1,∞ which obeys the simplified

crossing symmetry equation

F(x) = x2hF(1/x) = x2h(1− x)2hF(1− x) (3.33)

In fact, the space of such functions is a vector space of dimension 1 + b2h/3c. To see this,

consider the function

a(x) =
(1− x+ x2)2

(1− x)2
(3.34)

which obeys (3.33) with h = 1. The function F(x)a(x)−h is invariant under the anharmonic

group generated by x→ 1−x and x→ 1/x. Moreover, this function is analytic everywhere

on the Riemann sphere with the exception of a pole of order 2h at x = eπi/3, along

with a mirror image pole at x = e−πi/3. These points are order-three fixed points of the

anharmonic group, so when expanded around x = ±eπi/3, only cubic powers may appear.

The function

k(x) =
x2(1− x)2

(1− x+ x2)3
(3.35)

is the unique meromorphic function invariant under the anharmonic group that has a pole

of order 3 at x = ±eπi/3. We can therefore expand F(x)a(x)−h in integer powers of k, to

obtain

F(x) =

b2h/3c∑
n=0

cn
x2n(1− x+ x2)2h−3n

(1− x)2h−2n
(3.36)

To implement this way of computing four-point functions, we note that to determine the

coefficients cn, we now simply expand this function in powers of x and use the OPE to

determine these coefficients as products of three-point functions.

It is instructive to phrase our conclusions in the language of modular functions. Equat-

ing x with the modular lambda function

x = λ(τ) ≈ 16q1/2 − 128q +O(q3/2) , (3.37)

where q = e2πiτ , gives a map from M0,4 (the moduli space of four marked points on the

sphere) to M1,0 (the moduli space of a torus). Accordingly, SL(2,Z) transformations of
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τ induce anharmonic group transformations of x: specifically, x → 1 − x and x → 1/x

are induced by the S and TST transformations, respectively. The problem of finding

a function invariant under the anharmonic group therefore maps to finding a modular

function, with desired polar structure in q determined by the poles in x via (3.37). Given

the identification (3.37), our function k(x) in (3.35) is just (256 times) the inverse of the J

function: k(x) = 256/J(τ). So the construction of the four-point function F(x) is literally

identical to that of torus partition functions of holomorphic CFTs, as in [1]. Likewise, (3.36)

implies a Rademacher expansion for OPE coefficients of higher dimension operators.

We now treat some useful examples. For h = 1 we have

F(x) = c0
(1− x+ x2)2

(1− x)2
(3.38)

This is exactly the four-point function of a spin-1 current, j. The coefficient c0 = k2 is

determined by the first (trivial) OPE coefficient jj1, where k is the level of the current

algebra.

For h = 2 we get two possible functions,

F(x) =
c0(1− x+ x2)4 + c1(1− x)2x2(1− x+ x2)

(1− x)4
(3.39)

This is the stress tensor four-point function. Matching the small x expansion with OPE

coefficients of TT1 and TTT , we find c0 = c2/4 and c1 = c(2 − c), where we used the

canonical norm for the stress tensor, NT = c/2 . This matches 〈TTTT 〉 as computed

in (3.10).

For h = 3 we have

F(x) =
c0(1− x+ x2)6 + c1(1− x)2x2(1− x+ x2)3 + c2(1− x)4x4

(1− x)6
(3.40)

This is the four-point function of a spin-3 current, call it W , which was first worked out

in [43] in the context of CFTs with W3 symmetry.13 Matching the small x expansion

with OPE coefficients determines the ci. In a theory with W3 symmetry, the first three

quasi-primary operators appearing in the exchange channel of 〈WWWW 〉 are 1, T and

the level-four quasi-primary Λ, which is the normal-ordered product of T with a derivative

term subtracted:

Λ := (TT )− 3

10
∂2T . (3.41)

This operator has norm NΛ = c(5c + 22)/10. The OPE coefficient WWW vanishes, as it

does for W being any odd-spin chiral quasi-primary. Computing OPE coefficients using

the Virasoro algebra and matching to the small-x expansion of (3.40), we find

c0 = N 2
W , c1 = N 2

W

(
6(3− c)

c

)
, c2 = N 2

W

(
3(5c2 − 71c− 102)

c(5c+ 22)

)
(3.42)

13We believe our result actually corrects a sign error in [43]: the parameter µ there should be a sum, not

a difference, of two terms.
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where 〈W3W−3〉 ≡ NW ∝ c is the norm of W .14 As explained in section 3.1, 〈WWWW 〉
does not truncate in a 1/c expansion.

For h = 4 we get

F(x) =
c0(1− x+ x2)8 + c1(1− x)2x2(1− x+ x2)5 + c2(1− x)4x4(1− x+ x2)2

(1− x)8
(3.43)

An example of an h = 4 chiral operator whose four-point function we will need in the

sewing construction of Zvac is the quasi-primary Λ introduced in (3.41). Again computing

the ci by matching to OPE coefficients, we find

c0 = N 2
Λ , c1 = N 2

Λ

(
32

c
− 8

)
, c2 = N 2

Λ

(
4
(
125c2 + 590c+ 3704

)
5c(5c+ 22)

)
(3.44)

In closing, one interesting comment is that certain general consequences can be imme-

diately read off from (3.36). For example, when h is not a multiple of 3 every contribution

to the four-point function F(x) includes a factor of 1− x+ x2. Thus if h is not a multiple

of 3, the four-point function vanishes when x = ±eπi/3.

4 Genus-two partition functions

We are now ready to compute Zvac at genus two, which captures the contribution of the Vi-

rasoro vacuum module to the partition function of a CFT on a genus-two Riemann surface.

We begin this section by reviewing the Schottky uniformization of generic genus-g Riemann

surfaces and the sewing construction of the genus-g partition function. We then turn to

the actual computation of Zvac at genus two using sphere four-point functions of low-lying

Virasoro vacuum descendants. The final result can be found by substituting the results of

subsection 4.2 into equation (4.12). We focus on the holomorphic part of Zvac henceforth.

4.1 Schottky uniformization and the partition function

A non-singular genus-g Riemann surface can be constructed by cutting out 2g disks on the

Riemann sphere and identifying pairs of boundary circles to form g handles. The Schottky

uniformization of the Riemann surface entails the identification of pairs of circles through

Möbius transformations γi, i ∈ {1, 2, · · · , g}, which are elements of PSL(2,C). The maps

γi form the generators of the Schottky group, Γ. There are three parameters {ai, ri, pi}
associated with the ith handle: (ai, ri) are the locations of the centers of the boundary

circles, and pi determine the width of the handles. A global conformal transformation

can fix the positions of three boundary circles on the sphere and thus a genus-g Riemann

surface has 3g − 3 complex moduli.

14If the chiral algebra contains a spin-4 current too, as in the case of the W∞[λ] algebra appearing in

the context of higher spin AdS/CFT [44], this current will also appear at level four with nonzero OPE

coefficient, and will change the value of c2. This generalization is simple to compute using the W∞[λ]

algebra; one instead finds c2 = 3N 2
W (λ2(25c2 − 115c + 546) − 100c2 − 740c − 7464)/(5c(5c + 22)(λ2 − 4)).

This agrees with a previous result [45].
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We consider the Schottky uniformization of a genus-g Riemann surface following the

conventions of [40] (see their appendix C), where the locations of each pair of identified

circles are given by the Möbius transformation

γai,ri(z) =
riz + ai
z + 1

, (4.1)

where γai,ri(0) = ai and γai,ri(∞) = ri. The generators of the Schottky group are given in

terms of this map as

γi = γai,riγpiγ
−1
ai,ri , (4.2)

where γpi(z) = piz. We note that identified circles have opposite orientations: for the

ith pair the two boundary circles are given by the maps Ci = γai,riγRiC and C̄−i =

γai,ri γ̂γR−iC, where C is the unit circle at the origin, Ri and R−i are the radii of Ci and

C̄−i respectively, and γ̂ is the inverse map

γ̂(z) =
1

z
. (4.3)

The product of the radii of the two circles is RiR−i = pi. We refer the reader to appendix

C of [40] for more details on the Schottky parametrization.

The partition function of a genus-g Riemann surface uniformised by the Schottky group

is given by the following power series expansion in pi [40]:15

Zg =
∑

h1,··· , hg

ph11 · · · p
hg
g Ch1,..., hg(a3, . . . , ag, r2, . . . , rg). (4.4)

In the sewing construction, a handle is replaced by the boundary states inserted at the

centers of the two disks. The functions Ch1,··· ,hg are 2g-point functions on the Riemann

sphere and hi is the conformal dimension of the operators inserted at the ith pair of disks.

A schematic picture of the sewing construction is shown in figure 4. In the above equation

we have fixed the positions a1 = 0, r1 =∞, and a2 = 1. The 2g-point functions Ch1,··· ,hg ,

whose ingredients we will explain in the next paragraphs, are sums over products of vertex

operators of the form

Ch1,··· ,hg =
∑

φi,ψi∈Hhi

g∏
i=1

G−1
φiψi

〈 g∏
i=1

V out(ψi, ri) V in(φi, ai)

〉
, (4.5)

where G is the Zamolodchikov metric defined below in (4.20), and Hhi is the Hilbert space

of states of dimension hi.

These expressions for the vertex operators should be understood as follows. Under any

Möbius transformation γ(z), the vertex operator V (φ(z)) transforms as [46]

V

(
U
(
γ(z)

)
φ, γ(z)

)
= V

(
γ′(z)L0 e

γ′′(z)
2γ′(z) L1φ, γ(z)

)
, (4.6)

15Actually, the formula (4.4) just gives the partition function up to a factor of the form e−cF0 ; in other

words, in an expansion of the free energy F := − lnZg in 1/c, it only gives the order c0 and higher terms.

The order-c1 term cF0 depends on the full metric on the Riemann surface, not just the complex structure.

Its calculation within the context of the sewing construction is explained in appendix D.
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where

γ′(z) =
dγ

dz
, γ′′(z) =

d2γ

dz2
. (4.7)

For the Möbius transformation (4.1) we have

γ′ai,ri(z) =
(ri − ai)
(z + 1)2

, γ′′ai,ri(z) = −2
(ri − ai)
(z + 1)3

,(
γai,ri γ̂

)′
(z) =

(ai − ri)
(z + 1)2

,
(
γai,ri γ̂

)′′
(z) = −2

(ai − ri)
(z + 1)3

.

(4.8)

The “in” and “out” vertex operators in the sewing construction (4.5) then transform as

V in(φi, ai) = V

(
U
(
γai,ri(z = 0)

)
φi, γai,ri(z = 0)

)
= (ri − ai)L0e−L1φi(ai), (4.9)

and

V out(ψi, ri) = V

(
U
(
γai,ri γ̂(z = 0)

)
ψi, γai,ri γ̂(z = 0)

)
= (−1)L0(ri − ai)L0e−L1ψi(ri).

(4.10)

For i = 1, i.e. for the handle with the two ends at (0,∞), one can perform an extra Möbius

transformation under which the two maps at zero and infinity become the identity and the

inverse map, respectively. This is described in the next subsection. We note that if φi and

ψi are quasi-primaries, then the vertex operators are given by

V in(φqp, ai) = (ri − ai)hφqpφqp(ai),
V out(ψqp, ri) = (−1)hψqp (ri − ai)hψqpψqp(ri).

(4.11)

4.1.1 Genus two

We now specialize to genus-two Riemann surfaces. The partition function is given by

Zg=2 =

∞∑
h1,h2=0

ph11 ph22 Ch1,h2(x), (4.12)

where we have defined r2 = x. Using (4.5), the functions Ch1,h2(x) are found to be

Ch1,h2(x)=
∑

φi,ψi∈Hhi

G−1
φ1ψ1

G−1
φ2ψ2

〈
V out(ψ1,∞) V out(ψ2, x) V in(φ2, 1) V in(φ1, 0)

〉
. (4.13)

These two formulae apply in general. For our purposes of computing Zvac, we only allow

Virasoro descendants of the identity to be inserted at the boundary circles of the handles

as in figure 1. Henceforth, we refer to (4.12) with the understanding that we compute Zvac

specifically.

Let us now define the vertex operators needed in (4.13), starting with those at (0,∞).

The functions Ch1,h2(x) are invariant under the map γai,ri → γai,riγt, where γt(z) = tz,

t ∈ C∗. For the i = 1 handle with its two ends located at a1 = 0 and r1 =∞, we consider

a Möbius transformation of the form γa1,r1γ1/r1 and find

γa1,r1γ 1
r1

=
z

1 + z
r1

∣∣∣
r1→∞

= z, γa1,r1γ 1
r1

γ̂ =
1

z + 1
r1

∣∣∣
r1→∞

=
1

z
. (4.14)
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This therefore gives the identity map for a1 = 0 and the inverse map for r1 = ∞. The

vertex operator at the origin is simply

V in(φ1, 0) = V (φ1, 0) = φ1(0). (4.15)

The vertex operator at infinity follows from using

γ̂′(z) = − 1

z2
, γ̂′′(z) =

2

z3
, (4.16)

which yields

V out(ψ1,∞) = V

(
U
(
γ̂(z)

)
ψ1,∞

)
= lim

z→∞
(−1)L0z2L0 e−z L1ψ1(z). (4.17)

For the handle with vertices at (a2, r2) = (1, x), we use (4.9)–(4.10) to read off

V in(φ2, 1) = (x− 1)L0e−L1φ2(1), (4.18)

V out(ψ2, x) = (−1)L0(x− 1)L0e−L1ψ2(x). (4.19)

The Zamolodchikov metric is defined in terms of the in and out vertex operators as16

Gφψ =

〈
V out(ψ,∞)V in(φ, 0)

〉
. (4.20)

We choose an orthogonal basis of states at each level by diagonalizing the Gram matrix.

The Zamolodchikov metric is thus diagonal and the ingoing and outgoing vertex operators

are the same up to Möbius transformations. Consequently, we can (and will) define the

norm of the states as Nφ ≡ Gφψ.

To summarize, the following is the prescription for constructing the genus-two partition

function: insert vertex operators (4.15), (4.17)–(4.19) and the Zamolodchikov metric (4.20)

into (4.13) to evaluate Ch1,h2(x), and sum over these using (4.12).

4.2 Four-point functions Ch1,h2(x)

We will momentarily compute some of the functions Ch1,h2(x) defined in (4.13). Before

doing so, it is useful to elucidate some of their general properties.

First, these functions are symmetric under the exchange of the positions of the two

handles:

Ch1,h2(x) = Ch2,h1(x) (4.21)

When h1 = 0 or h2 = 0,

C0,h(x) = Ch,0(x) = d(h) , (4.22)

16We note that our formulae (4.10) and (4.17) contain an extra factor of (−1)L0 comparing to the

formulae in appendix C of [40]. The reason is that we choose a different convention than that of [40]. In

our convention G is the Zamolodchikov metric whereas in [40] their metric Ĝ is a metric on the space of

states which is related to G via Ĝφψ = G(−1)L0φψ.
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where d(h) is the degeneracy of operators at level h. This follows from the definition

of the vertex operators and of the Ch1,h2(x) themselves. It can also be understood in-

tuitively: replacing either handle with two insertions of the identity reduces the genus-

two partition function to the torus partition function, the holomorphic half of which is

Tr pL0 =
∑

h d(h)ph.17 Thus, (4.12) implies (4.22).

Now we consider the x-dependence of Ch1,h2(x). For general x, they obey

Ch1,h2(x) = Ch1,h2(1/x) (4.23)

which is a consequence of modularity with respect to Sp(4,Z). Taking various limits in x

corresponds to taking OPE limits of the (dressed) four-point functions defining Ch1,h2(x).

The simplest one is x→ 1, which describes the fusion of two ends of the same handle. In

this case,

Ch1,h2(1) = d(h1)× d(h2) . (4.24)

This again follows by definition, and is necessary for the partition function (4.12) to fac-

torize in the separating degeneration limit.

More subtle are the equivalent OPE limits x → 0 and x → ∞, which describes the

fusion of two ends of different handles. These limits are singular. In appendix A, we show

that in a 1/c expansion, the leading powers of x → 0 that appear are correlated with

powers of 1/c as follows:

lim
c→∞

lim
x→0

Ch1,h−h1(x) ∼ O(x−h) +
1

c
O(x−h+2) +

( ∞∑
n=2

1

cn

)
O(x−h+4). (4.25)

We have defined h2 = h − h1, and are assuming h > h1 > 0 because C0,h(x) is constant.

We are ignoring h1- and h-dependent coefficients at each order, and displaying only the

leading singular behavior at each order in 1/c. The last term means that at O(1/c2) and

all orders beyond, the leading divergence scales as O(x−h+4).

We now proceed to compute Ch1,h2(x) explicitly for low values of h1 and h2. A word

on notation: henceforth, we denote the set of operators at level h above the ground state

as {O(i)
h }, where i = 1, 2, . . . , d(h).

4.2.1 Ch,0(x)

In this case, the identity operator propagates through one of the handles, so the four-point

functions reduce to two-point functions

Ch,0(x) =
∑

φ,ψ∈Hh

G−1
φψ

〈
V out(ψ,∞) V in(φ, 0)

〉
,

C0,h(x) =
∑

φ,ψ∈Hh

G−1
φψ

〈
V out(ψ, x) V in(φ, 1)

〉
.

(4.26)

17Note the c-independence of this quantity. When summing over the vacuum module only, the dimensions

of each state are fixed by conformal symmetry, and hence unrenormalized. This is the CFT statement of

the one-loop exactness of the pure gravity partition function on a solid torus.
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As discussed earlier, Ch,0(x) = d(h); from the definition of Gφφ in (4.20), this is obviously

true. It is less obvious that C0,h(x) = d(h) by looking at (4.26). Hence, we find it

instructive to compute two C0,h(x) in detail, to illustrate how to use the method of [40]

outlined above. In the first example we consider a quasi-primary state and in the second

example we consider a secondary state. The latter is particularly useful, as secondary

operators transform nontrivially under the Möbius transformations, so care must be taken

in computing their correlation functions.

At level 2 (h = 2) there is only one state, the stress tensor T = L−2|0〉, which is a

quasi-primary with norm NT = c
2 . From (4.18)–(4.19), the vertex operators at x and 1 are

V out(T, x) = (x− 1)2 T (x),

V in(T, 1) = (x− 1)2 T (1).
(4.27)

Then we have, as expected,

C0,2(x) = N−1
T

〈
V out(T, x) V in(T, 1)

〉
= 1 , (4.28)

where we used the stress tensor two-point function

〈T (x)T (1)〉 =
c

2

1

(x− 1)4
. (4.29)

At level 3, there is again one state O3 = ∂T = L−3|0〉, this time a secondary state

with norm NO3 = 2c. The vertex operators at x and 1 are now, from (4.18)–(4.19),

V out(O3, x) = −(x− 1)3∂T (x)− 4(x− 1)2T (x),

V in(O3, 1) = (x− 1)3∂T (1)− 4(x− 1)2T (1).
(4.30)

Using (4.29) we again have, as expected,

C0,3(x) = N−1
O3

〈
V out(O3, x) V in(O3, 1)

〉
=

1

2c

〈(
− (x− 1)3 ∂T (x)− 4(x− 1)2 T (x)

) (
(x− 1)3∂ T (1)− 4 (x− 1)2T (1)

)〉
= 1. (4.31)

It is also useful to see the vertex operator at infinity, which carries non-trivial dressing on

account of O3 being a secondary operator:

V out(O3,∞) = lim
z→∞

V
(

(−1)L0z2L0 e−z L1O3, z
)

= lim
z→∞

(
− z6∂T (z)− 4z5T (z)

)
. (4.32)

We next move on to the computation of Ch1,h2(x) for h1 6= 0 and h2 6= 0. We compute

the requisite four-point functions using the methods described in section 3. The trans-

formation properties of the vertex operators are evaluated following the same procedure

shown in the above examples; accordingly, the presentation here is streamlined, with some

details of the vertex operator transformations relegated to appendix B. There, we also list

the operators and their norms through level six of the vacuum module.
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4.2.2 Ch,2(x)

First, consider the four-point function with h2 = 2 which corresponds to the four-point

function of four stress tensors, each dressed with appropriate factors of x and z (recall

equation (4.13)). We find that

C2,2(x) =
1(
c
2

)2 lim
z→∞

〈
z4T (z) (x− 1)2 T (x) (x− 1)2T (1) T (0)

〉
=

(
1 + (x− 1)4 +

(x− 1)4

x4

)
+

8

c

(x− 1)2 (1− x+ x2)

x2
, (4.33)

We note that C2,2(x) is manifestly symmetric under x→ 1/x, as required.

We next compute C3,2(x). This can be done by taking the derivative of C2,2(x) with

respect to the sphere coordinates at the insertion points of O3, or by direct computation

of the four-point function using the Virasoro mode expansion formula (3.8). We obtain

C3,2(x) =
1

x5

(
4− 16x+ 24x2 − 16x3 + 4x4 + x5 + 4x6 − 16x7 + 24x8 − 16x9 + 4x10

)
+

1

c

2 (x− 1)2

x3

(
4 + x− 4x2 + x3 + 4x4

)
, (4.34)

We used (4.27) and (4.32) to write down the necessary vertex operators. One can explicitly

check that C3,2(x) = C2,3(x), as required.

We next move to level four and evaluate C4,2(x). There are two orthogonal states at

level four,

O(1)
4 = Λ =

(
L2
−2 −

3

5
L−4

)
|0〉 , O(2)

4 = L−4|0〉 , (4.35)

where Λ is the quasi-primary first recalled in (3.41), and O(2)
4 = ∂2T/2 is secondary with

norm NO(2)
4

= 5c. We obtain

C4,2(x) =
2

x6

(
5− 20x+ 31x2 − 24x3 + 11x4 − 4x5 + 3x6 (4.36)

−4x7 + 11x8 − 24x9 + 31x10 − 20x11 + 5x12
)

+
1

c

4 (x− 1)2

x4

(
4− 3x+ 10x2 − 14x3 + 10x4 − 3x5 + 4x6

)
.

Note that the finite expansion in 1/c is at first surprising because N−1
Λ has an infinite 1/c

expansion; there are non-trivial cancellations between the two correlators. We will explain

this in a moment.

For the remaining computations, we will be briefer. (We remind the reader of ap-

pendix B containing further details.) At level five, we find

C5,2(x) =
1

x7

(
20− 80x+ 124x2 − 95x3 + 40x4 − 10x5 (4.37)

+4x7 − 10x9 + 40x10 − 95x11 + 124x12 − 80x13 + 20x14
)

+
1

c

4 (x− 1)2

x5

(
6− 6x+ 7x2 + 5x3 − 14x4 + 5x5 + 7x6 − 6x7 + 6x8

)
.
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At level six, we find

C6,2(x) =
1

x8

(
35− 140x+ 220x2 − 172x3 + 67x4 − 8x5 + 2x6 − 8x7 + 12x8 (4.38)

−8x9 + 2x10 − 8x11 + 67x12 − 172x13 + 220x14 − 140x15 + 35x16
)

+
1

c

4 (x− 1)2

x6

(
8− 7x+ 10x2 − 8x3 + 46x4 − 74x5 + 46x6 − 8x7

+10x8 − 7x9 + 8x10
)
.

We observe that all the functions Ch,2(x) we have computed so far contain a term

proportional to 1/c and a term constant in c. In fact, this is true for all h. The reason is

that the sum over h of Ch,2(x) is related to the two-point function of the stress tensor on

the torus with the insertion of a vacuum projector:

〈PvacT (1)T (x)〉 =
c

2

1

(x− 1)4

∑
h

Ch,2(x)ph1 (4.39)

(where p1 = e2πiτ ). This two-point function can in turn be obtained by differentiating the

vacuum free energy Fvac(T
2) with respect to the metric. This free energy was shown at

the end of subsection 3.1 to be one-loop exact, in other words to contain only terms linear

and constant in c. Hence, for all h, Ch,2(x) must contain only terms constant and inversely

proportional to c.

4.2.3 Ch,3(x)

We next compute the functions Ch1,h2(x) with h1 ≥ 3 and h2 = 3. The first function is

C3,3(x) which corresponds to the four-point function of four ∂T ’s. This correlation function

can be evaluated by taking the derivatives of C2,2(x) with respect to the sphere coordinates

at the location of the four operators, or by direct computation. We find

C3,3(x) =
1

x6

(
25− 110x+ 191x2 − 164x3 + 71x4 − 14x5 (4.40)

+3x6 − 14x7 + 71x8 − 164x9 + 191x10 − 110x11 + 25x12
)

+
1

c

(x− 1)2

x4

(
18− 6x+ x2 − 8x3 + x4 − 6x5 + 18x6

)
,

Next, for C4,3(x) we find

C4,3(x) =
2

x7

(
45− 210x+ 399x2 − 396x3 + 219x4 − 66x5 + 9x6 (4.41)

+x7 + 9x8 − 66x9 + 219x10 − 396x11 + 399x12 − 210x13 + 45x14
)

+
1

c

(x− 1)2

x5

(
64− 83x+ 68x2 + 3x3 − 56x4 + 3x5 + 68x6 − 83x7 + 64x8

)
,

and for C5,3(x) we find

C5,3(x) =
1

x8

(
245− 1190x+ 2380x2 − 2526x3 + 1530x4 (4.42)

−530x5 + 100x6 − 10x7 + 4x8 − 10x9 + 100x10
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−530x11 + 1530x12 − 2526x13 + 2380x14 − 1190x15 + 245x16
)

+
1

c

(x− 1)2

x6

(
150− 264x+ 201x2 − 32x3 + 3x4 − 56x5 + 3x6

−32x7 + 201x8 − 264x9 + 150x10
)
.

Again, all of the functions Ch,3(x) evaluated so far truncate at order 1/c in a large-c

expansion. This is because all four-point functions in Ch,3(x) can be computed by tak-

ing derivatives of stress tensors in Ch,2(x), which do not affect the c-dependence of the

correlators.

4.2.4 C4,4(x)

The function C4,4(x) is a linear combination of four four-point functions:

C4,4(x) =

2∑
i,j=1

N−1
O4,i
N−1
O4,j

〈
V out(O4,i,∞) V out(O4,j , x) V in(O4,j , 1) V in(O4,i, 0)

〉
. (4.43)

By the same argument below (4.37) and (4.42), the terms which contain at least one pair of

the secondary operator O(2)
4 = ∂2T/2 truncate at order 1/c in a large-c expansion. The only

term in C4,4(x) which could potentially contribute at higher orders in 1/c is the four-point

function of four quasi-primaries Λ, defined in (3.41). Let us focus on this contribution,

which we call C4,4|Λ(x).

Using the definitions of the vertex operators simply yields

C4,4|Λ(x) = N−2
Λ (x− 1)8 lim

z→∞
z8

〈
Λ(z) Λ(x) Λ(1) Λ(0)

〉
. (4.44)

The norm of Λ was given in (B.4). Substituting this and the results (3.43)–(3.44) for the

four-point function obtained via the holomorphic bootstrap, we find

C4,4|Λ(x) =
(1− x+ x2)8

x8
+

(
32

c
− 8

)
(x− 1)2(1− x+ x2)5

x6

+
4 (3704 + 590c+ 125c2)

5c (22 + 5c)

(x− 1)4(1− x+ x2)2

x4
. (4.45)

Crucially to what follows, we observe that C4,4|Λ(x) contributes to an infinite expansion in

1/c. This comes entirely from the inverse norms in (4.44).

The collection of Ch1,h2(x) computed in this subsection, plugged into the partition

function (4.12), forms one of our main computational results: namely, the first several

terms in the Virasoro vacuum module contribution to the partition function of an arbitrary

CFT on a genus-two Riemann surface, in the regime of Schottky parameters p1, p2 � 1.

5 Free energy at large central charge, 3D gravity, and Rényi entropies

Having derived the first handful of terms in equation (4.12) for all c, it is trivial to expand

it at large c. As we have discussed, this large c expansion may be interpreted as the
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semiclassical expansion of the pure 3D quantum gravity partition function around genus-

two handlebody geometries with conformal boundary Σ specified by Schottky parameters

{p1, p2, x}. In subsection 5.1, we present some of our main results. First, we provide

explicit contributions of the Virasoro vacuum representation to the CFT free energy at all

orders in 1/c, corresponding to all-loop free energies in the gravitational loop expansion.

We also show that at least in the perturbative regime p1, p2 � 1, the loop expansion does

not truncate except when Σ is the union of two tori.

We then proceed to subsections 5.2 and 5.3, where we expand our general result (4.12)

near two symmetric points in the genus-two moduli space: the replica surface R2,3 used

to compute the Rényi entropy S3 for two disjoint intervals in vacuum, and the point

corresponding to the separating degeneration limit x = 1. Our results will extend those

of [33] and [28], respectively.

5.1 All-loop results in 3D quantum gravity

We consider the 1/c expansion of the vacuum free energy, Fvac = − logZvac:

Fvac =

∞∑
`=0

c1−`Fvac; ` (5.1)

where ` denotes the loop order. Its moduli-dependence is kept implicit. We can read off

the loop corrections Fvac; ` from (4.12) upon expanding the Ch1,h2(x) in 1/c. We likewise

expand these as

Ch1,h2(x) =

∞∑
`=1

c1−`Ch1,h2; `(x) . (5.2)

To begin, note that in the small (p1, p2) expansion in which we work, both the one-

and two-loop free energies are nonzero. This follows from the explicit results in section 4

and from the Rényi entropy computation (2.15), but also from our general exposition of

c-scaling of identity module correlators in section 3.1.

More interesting is the question of whether there are higher-loop terms. For ` > 2, the

Ch1,h2(x) that we have computed all obey Ch1,h2; `(x) = 0 except for C4,4|Λ(x), computed

in (4.45), which clearly has an infinite expansion. Accordingly, the leading contribution

to the three-loop free energy Fvac; 3 in a small (p1, p2) expansion can, and does, appear at

O(p4
1p

4
2):

Fvac; 3 = p4
1p

4
2

(
C4,4; 3(x)− 1

2
(C2,2; 2(x))2

)
+O(p4

1p
5
2) . (5.3)

There is no cancellation: instead, our results yield

Fvac; 3 = p4
1p

4
2

13312(x− 1)4(1− x+ x2)2

25x4
+O(p4

1p
5
2) . (5.4)

For x ∈ R, this only vanishes at x = 1. This point in moduli space corresponds to the strict

separating degeneration limit. As the torus free energy is known to truncate at O(c0) in a
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large c expansion [2], the fact that Fvac; 3 = 0 when x = 1 is required by consistency. The

interesting result proven here is that Fvac; 3 is nonzero everywhere else on the real line.18

In fact, the infinite 1/c expansion of C4,4(x) and the finite 1/c expansion of C2,2(x)

together imply that the `-loop free energy Fvac; ` is nonzero for all `, at least in a small

(p1, p2) expansion. The reason is simply that the term at O(p4
1p

4
2) cannot be cancelled by

higher order terms in p1 and p2. For ` > 3 — that is, at O(1/c3) and beyond — Fvac; ` is

given to leading order in p1, p2 as

Fvac; `>3 = p4
1p

4
2 C4,4; `>3(x) +O(p4

1p
5
2) (5.5)

with

C4,4; `>3(x) =
(x− 1)4(1− x+ x2)2

x4
·
(

4(3704 + 590c+ 125c2)

5c(5c+ 22)

) ∣∣∣∣∣
c1−`

. (5.6)

determined by (4.45). From a technical standpoint, this non-trivial 1/c expansion arises

from the inverse norms appearing in the sewing construction, cancelling the norms in the

correlator 〈ΛΛΛΛ〉.
Interpreted as a CFT result, (5.5) is an exact expression for the contribution of the

Virasoro vacuum module to the genus-two free energy of any family of CFTs that admits

a 1/c expansion. Interpreted as a pure gravity result, (5.5) is an explicit formula for all-

loop free energies on genus-two handlebodies. The loop counting parameter in the bulk is

GN = 3RAdS/2c. In contrast to the one-loop exactness at genus one, the genus-two free

energy is not exact at any loop order.

Strictly speaking, we have so far established that the semiclassical expansion does

not truncate for any real x 6= 1. What about complex x? In particular, the all-loop

terms (5.4) and (5.6) clearly vanish at x = e±iπ/3, the complex roots of 1 − x + x2 = 0.

This follows from the same property of the four-point function of Λ, as discussed below

equation (3.44). But this is a special feature of correlators of identical operators with

h/3 /∈ Z, so it will not persist to higher orders in the sewing expansion. For instance,

C4,5; `>2(e±iπ/3) 6= 0, and likewise at all higher levels. Therefore, we have shown the

following statement: perturbatively in (p1, p2), the loop expansion does not truncate for any

genus-two handlebodies except at the separating degeneration point.

We note that at fixed order in p1 and p2, the 1/c expansion for Zvac converges. This

does not necessarily imply, however, that at a fixed point in moduli space (i.e. for fixed

values of p1 and p2) the 1/c expansion converges. Indeed, since there are presumably

other saddle point contributions to the path integral (coming from bulk handlebodies with

different topology) one might expect that the series expansion of Zvac is asymptotic in

1/c. However, in the genus one case the series expansion for Zvac converges — in fact, it

truncates at order c0. Thus it is an interesting open question whether the 1/c expansion

for Zvac converges at higher genus.

18Note that (5.3) and (5.4) also hold when p1 = p2, because the only contribution at O(1/c2) to Ch1,h2(x)

for h1 + h2 = 8 comes from C4,4(x). On the other hand, if x is a function of p1 and p2, higher order terms

in (5.4) are not necessarily suppressed. We will encounter such a situation in our discussion of Rényi entropy.
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Finally, let us comment on the holographic interpretation of our result for the one-loop

partition function, Zvac; 1. This can be viewed as a computation of the holomorphic half of

the graviton handlebody determinant,19

Zgrav
1 =

∏
γ∈P

∞∏
n=2

1

|1− qnγ |2
, (5.7)

The novelty of our computation is that we work in the regime of p1, p2 � 1 but for

arbitrary x. This regime has not been probed directly in existing computations of (5.7).

In [15], (5.7) was computed for handlebodies asymptotic to replica manifold for two-interval

Rényi entropy in a short interval expansion; this has only a single modulus and requires

p1 = p2 � 1 and x � 1. In [28], (5.7) was computed near the separating degeneration

limit where Σ becomes the union of two tori, which requires x ≈ 1 for arbitrary (p1, p2).

5.1.1 Higher spin theories

So far, we have restricted to the pure Virasoro sector of the CFT. The meaning and calcula-

tion of Zvac are conceptually unmodified in the presence of higher spin currents. Along with

the stress tensor, these Virasoro primaries live in the vacuum representation of an extended

conformal symmetry, typically a W algebra. In the computation of Zvac by sewing, we now

allow these currents and their normal ordered products to propagate through the handles.

The resulting Zvac is again of the form (4.12), only with different coefficients Ch1,h2(x).

The holographic dual of Zvac in the presence of higher spin symmetry is the pertur-

bative partition function of pure 3D higher spin gravity. A bulk Chern-Simons theory

with connections valued in two copies of a Lie algebra G describes the vacuum sector of a

CFT whose W algebra is the Drinfeld-Sokolov reduction of G [47]. Accordingly, the 1/c

expansion of Zvac for such a CFT yields the semiclassical loop expansion of the G × G
Chern-Simons higher spin theory.

As a simple example, consider a CFT with W3 symmetry, which contains a single higher

spin current of spin three, W . Its presence will modify most of the Ch1,h2(x) coefficients,

starting with C3,2(x) and C3,3(x).20 We can easily compute these using the correlators of

section 3. The interesting term is C3,3(x). Denoting the contribution to C3,3(x) from the

W current four-point function as δWC3,3(x), we find, using (3.40) and (3.42),

δWC3,3(x) := N−2
W (x− 1)6 lim

z→∞
z6〈W (z)W (x)W (1)W (0)〉

=
(1− x+ x2)6

x6
+

6(3− c)
c

(1− x)2(1− x+ x2)3

x4

+
3(5c2 − 71c− 102)

c(5c+ 22)

(1− x)4

x2
.

(5.8)

19The first product in (5.7) runs over primitive elements γ ∈ P ⊂ Γ, defined as those elements that

cannot be written as γ = βm for β ∈ Γ and m > 1. The eigenvalues of γ are eig(γ) = q
±1/2
γ , and we do not

count γ and γ−1 as distinct elements.
20The generating function of quasi-primaries containing at least one W current is given in appendix B

of [48].
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Expanded at large c, this yields an infinite series of loop corrections to the free energy of

G = SL(3) higher spin gravity:

F
SL(3)
vac; `>2 = p3

1p
3
2

(1− x)4

x2
·
(

3(5c2 − 71c− 102)

c(5c+ 22)

) ∣∣∣∣∣
c1−`

+O(p3
1p

4
2) . (5.9)

This is nonzero for all x 6= 1, so we conclude that the loop expansion does not truncate

away from the separating degeneration limit for small (p1, p2). This is true for all higher

spin algebras G. We will return to the topic of higher spin theories in the Discussion.

5.2 Rényi entropies

As discussed in section 2, there are three Rényi entropies that involve genus-two replica

manifolds without punctures (i.e. for CFTs not in excited states). These are the N =

2, n = 3 and N = 3, n = 2 Rényi entropies for a CFT on the plane, and N = 1, n = 2

for a CFT on the torus. We mostly focus on the N = 2 case, with replica manifold R2,3.

Our results in section 5.1 are sufficient to rule out the truncation of the 1/c expansion of

Fvac even in the case of the replica manifold Σ = R2,3 introduced in section 2.1. We now

exhibit this in detail; the final results can be found in (5.17) and (5.18).

5.2.1 Two intervals on the plane

Our goal is to express the free energy in terms of the coordinate y parameterizing the

interval spacing, defined in section 2. To do so, we need only to express the Schottky

coordinates {p1, p2, x} in terms of y. One way to proceed is by using the period matrix

Ω(y) for the replica manifold R2,3, which is known [38]. Thus, we will perform the map

{p1, p2, x} 7→ {qij(y)}, where qij(y) = exp[2πiΩij(y)] are the multiplicative periods, in

the regime of y corresponding to small (p1, p2). Plugging into (4.12) gives Fvac(R2,3) for

arbitrary c; we then proceed to study this result at large c.

For two disjoint intervals and arbitrary n, the period matrix is [38]

Ωij(y) =
2i

n

n−1∑
k=1

sin

(
π
k

n

)
cos

(
2π
k

n
(i− j)

)
2F1

(
k
n , 1− k

n ; 1; 1− y
)

2F1

(
k
n , 1− k

n ; 1; y
) , (5.10)

Specializing to n = 3, the period matrix is given by

Ω(y) =
2i√

3

2F1

(
1
3 ,

2
3 ; 1; 1− y

)
2F1

(
1
3 ,

2
3 ; 1; y

) (
1 −1

2

−1
2 1

)
. (5.11)

This is a highly symmetric genus-two Riemann surface: there is only a single modulus y,

as opposed to the 3g − 3 = 3 moduli of a generic genus-two surface.

To express the Schottky coordinates in terms of y, we need to invert the power series

expansion given in (2.17). The fact that q11 = q22 implies that in Schottky coordinates,

R2,3 has p1 = p2 ≡ p, as a quick inspection of (2.17) reveals. Our results are applicable

when p � 1, so (2.17) forces us to take q11 � 1 too. From (5.11), this is just the short
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interval limit, y � 1, often studied in the context of 2D CFT Rényi entropy: taking y � 1

in (5.11) yields multiplicative periods

q11

∣∣
y�1

=
y2

729
+

10y3

6561
+

29y4

19683
+O(y5),

q12

∣∣
y�1

=
27

y
− 15− 2y − 734y2

729
− 4181y3

6561
+O(y4) .

(5.12)

Finally, we obtain the series expansion of p and x in terms of y by inverting (2.17) us-

ing (5.12) and the explicit results for the coefficients c(n,m, |r|) and d(n,m, r) given in [40].

The result is

p(y) =
y2

729
+

28

19683
y3+

26

19683
y4+

5768

4782969
y5+

47429

43046721
y6+

10582844

10460353203
y7+O(y8),

x(y) =
27

y
− 15− 56

27
y − 28

27
y2 − 12892

19683
y3 − 3044

6561
y4 +O(y5) . (5.13)

Note that x(y) diverges linearly for small y.21

We can now compute the vacuum free energy Fvac(y) = − logZvac(y), and hence the

vacuum contributions to Rényi entropy, in a y � 1 short interval expansion, where

Zvac(y) =

∞∑
h1,h2=0

p(y)h1+h2Ch1,h2(y) , (5.14)

We will further expand this result at large c and compare to those of [33]. In order to

perform this expansion, we need to be a bit careful: because powers of x introduce inverse

powers of y, it is not manifest in (5.14) that the short interval expansion can be meaningfully

organized in powers of p(y). We need to know something about how Ch1,h2(x) scales with

large x, and hence small y. Fortunately, we can read this off from (4.25). Keeping terms

to leading order in y → 0 at each order in 1/c, and ignoring coefficients, (4.25) and (5.13)

imply that for h > h1 > 0,

lim
c→∞

lim
y→0

p(y)hCh1,h−h1(y) ∼ O(yh) +
1

c
O(yh+2) +

( ∞∑
n=2

1

cn

)
O(yh+4) . (5.15)

Therefore, we can indeed ignore higher order terms in the sum over h when we expand in

small y.

Without further ado, the results are as follows. At ` = 1, 2 we find

Fvac; 1(y) =
y4

177147
+

56 y5

4782969
+

2189 y6

129140163
+

24668 y7

1162261467
+O(y8)

Fvac; 2(y) =
8 y6

387420489
+

8 y7

129140163
+

11122 y8

94143178827
+

51818 y9

282429536481
+O(y10) .

(5.16)

21We note that p(y) is nothing but the square of the larger eigenvalue of the Schottky generators them-

selves: eig(Li(y)) = p(y)±2, where L1(y) = L2(y) are the Schottky generators in the y � 1 regime. This

was already computed in [15, 33, 39, 48]; see in particular equation (3.8) of [39], with k = 1, n = 3. One can

then find x(y) using the Schottky relations. Such an algorithm is an alternative to that presented in the text.
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Comparing to the results of [15, 33], we find agreement through O(y8).22 [33] only computed

through O(y8), so our term at O(y9) is new.

At three-loop order, (5.4) implies a nonzero result. Evaluating (5.4) for p1 = p2 = p(y)

and x = x(y), we find

Fvac; 3(y) = y12

(
13 · 210

52 · 336

)
+O(y13) . (5.17)

As discussed around (2.15), the authors of [33] computed Fvac; 3 through O(y8) only, and

found zero. We now see that the first contribution appears at O(y12). It is remarkable

that a computation through O(y11) using twist fields would not have revealed the nonzero

result! This speaks to the different strengths of the twist field method and the sewing

expansion that we have performed.

Finally, nonzero all-loop results at O(y12) follow from (5.5) and (5.6):

Fvac; `>3(y) =
y12

336
·
(

4(3704 + 590c+ 125c2)

5c(5c+ 22)

) ∣∣∣∣∣
c1−`

+O(y13) . (5.18)

5.2.2 Other genus-two Rényi entropies

Consider the three-interval Rényi entropy on the plane with n = 2. In this case, the replica

manifold R3,2 is a genus-two manifold characterized by three moduli that parameterize the

positions of the intervals modulo conformal symmetry.23 Our results for the free energy for

p1, p2 � 1 and general x can therefore be regarded as (universal contributions to) Rényi

entropies for the case of three disjoint intervals and n = 2.

The period matrix of R3,2 is known in terms of Lauricella functions [50]. To apply

our results, one would first need to understand the relative spacings of intervals that cor-

responds to p1, p2 � 1, by using the map from Schottky space to the period matrix. We

do not pursue this geometric picture here. It is clear, however, that not all intervals need

to be short, because x is allowed to be general. Thus, we have implicitly provided the first

computations of universal contributions to 2D CFT Rényi entropies that do not require all

intervals to be short.

One can also consider the case of one interval on the torus with n = 2. The replica

manifold has two moduli, namely, the temperature and interval length. Our methods can

again be applied to this case to derive universal contributions to the Rényi entropy from

the stress tensor sector. This has been done perturbatively in a high or low temperature

expansion in [15, 51, 52] using different methods that cannot access terms at two-loop and

beyond in a large-c expansion, unlike the sewing method here. We note that p1 and p2 as

a function of the moduli have been computed perturbatively in [15, 51, 52]. We leave the

remaining explicit calculation for future work.

22We can compare (5.16) directly to I3 in [33]. The mutual information In, cf. (2.7), has an overall factor

of 1/2 for n = 3; including the anti-holomorphic part, as they do in [33], contributes an overall factor of 2,

so the two factors cancel.
23Besides the case of n = 2 Rényi entropy for two intervals (for which the replica manifold is a torus with

complex structure τ given by a known function of the interval length [49]), this is the only replica manifold

that spans its entire genus g = (N − 1)(n− 1) moduli space.
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5.3 The separating degeneration limit

An important predecessor of the present work is [28], where the relation between Zvac and

3D gravity was first enunciated precisely. Yin tested this relation at genus two, focusing

on the separating degeneration limit of the Riemann surface, where Σ becomes the union

of two tori. Before we probe this region of moduli space with our new results, let us briefly

review the work of [28].

For the sake of easy comparison to [28], we use his notation in this subsection. We

write the elements of the period matrix Ω as

Ω11 = ρ , Ω22 = σ , Ω12 = ν . (5.19)

We also define the multiplicative periods

q = e2πiρ , s = e2πiσ , v = 2πiν . (5.20)

The separating degeneration limit corresponds to the limit v → 0 with (q, s) fixed, where

q and s parameterize the complex structure of the two tori.

In the 1/c expansion, [28] computed parts of Fvac; 0, Fvac; 1 and Fvac; 2 at genus two

using a variety of methods, all of which agree:

• Demanding a match to the polar parts of extremal CFT partition functions at low

values of k = c/24, which are fixed by invariance under the genus-two modular group

Sp(4,Z). That this match should hold follows from the definition of extremal CFTs,

theories that have no non-trivial Virasoro primaries of dimension less than k + 1

above the vacuum.

• For Fvac; 1, direct computation of (5.7).

• Direct computation of Zvac written as a sum over bilinears of torus one-point functions

of Virasoro vacuum descendants. This is similar to what we do in the present work.

Although it is not our focus here, F0 is given by a certain Liouville action whose origins

we explain in appendix D. In order to write the expressions for Fvac; 1 and Fvac; 2, we must

define the holomorphic Eisenstein series, normalized as

Êρn =
∞∑
m=1

mn−1qm

1− qm . (5.21)

For n = 2, 4, these hatted versions relate to the usual Eisenstein series as

Êρ2 =
1− E2(q)

24
≈ q + 3q2 + 4q3 +O(q4)

Êρ4 =
E4(q)− 1

240
≈ q + 9q2 + 28q3 +O(q4) .

(5.22)

The results of [28], which we denote FYin
vac , are as follows: in the separating degeneration

limit v → 0,

FYin
vac; 1 =−

∞∑
n=2

log[(1− qn)(1− sn)] + v2

(
2q

1− q Ê
σ
2 +

2s

1− sÊ
ρ
2 − 4Êσ2 Ê

ρ
2

)
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+v4

(
− 1

2

(
2q

1− q Ê
σ
2 +

2s

1− sÊ
ρ
2 − 4Êσ2 Ê

ρ
2

)2

(5.23)

+
qs

6

(
− 2(q+s)+45(q2+s2)+72qs+745(q2s+qs2)+3720q2s2

)
+O(q4, s4)

)
+O(v6)

and24

FYin
vac; 2 = 2v2

(
q

1− q − Ê
ρ
2

)(
s

1− s − Ê
σ
2

)
+ 24v4

(
q2s2

(
13

36
+

1

8
(q + s)− 45

16
qs

)
+O(q4, s4)

)
+O(v6) .

(5.24)

Note that these are non-perturbative in q and s through O(v2), and the leading term in

FYin
1 is just the sum of one-loop free energies on two tori with periods q and s. (Note that

in order to recover the O(v0) piece of FYin
vac; 1, one relies on (4.24).) Expanding everything

through O(q3s3), we find

FYin
vac; 1 = (q2 + q3 + s2 + s3)

− v2
(

2qs(q + s+ 3qs)(2 + 3q + 3s+ 8qs)
)

+ v4

(
qs

6

(
− 2(q+s)+45(q2+s2)+72qs+745(q2s+qs2)+3624q2s2

))
+O(v6, q4, s4)

(5.25)

and

FYin
vac; 2 = 24v2

(
q2s2

(
1

3
+

1

2
q +

1

2
s+

3

4
qs

))
+ 24v4

(
q2s2

(
13

36
+

1

8
(q + s)− 45

16
qs

))
+O(v6, q4, s4) .

(5.26)

We are now in a position to extend these results using our computations. As in the

previous subsection, our goal is to perform the map {p1, p2, x} 7→ {q, s, v}, express Fvac in

these variables, and expand at large c.

In [28], the following relations were established:

p1 = q

(
1− v2(2Êσ2 )− v4

(
2(Êσ2 )2 +

2

3
Êρ2 Ê

σ
2 −

1

6
Êσ4 +

10

3
Êρ2 Ê

σ
4

)
+O(v6)

)
p2 = p1(σ ↔ ρ) .

(5.27)

All we need now is to derive x(q, s, v). We do so by inverting one of the Schottky relations

in equation (2.17),

ev = x+ x
∞∑

n,m=1

pn1p
m
2

n+m∑
r=−n−m

d(n,m, r)xr . (5.28)

24The semiclassical expansion of the free energy in [28] was performed in powers of 1/k = 24/c. We

expand in 1/c, and define FYin according to the 1/c, rather than the 1/k, expansion. Thus, our FYin
vac; 2

equals 24 times the S2 found in [28].
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Note that for s = q = 0, we have x = ev. So we can write this as x = ev + O(q, s, qv, sv).

The final result for x is rather appealing,

x = ev − 4Êσ2 Ê
ρ
2(v3 + v4) +O(v5qs) . (5.29)

We derive this in appendix C.

Plugging equations (5.27) and (5.29) into (4.12) enables us to extend the results of [28]

in two ways. First, we can now give the O(v4) part of the one- and two-loop free en-

ergies (5.25) and (5.26), respectively, through O(q3s4, q4s3), not only through O(q3s3).

Second, and more importantly, we can write down some of the leading terms as v → 0 for

all loops.

We find

Fvac; 1 = FYin
vac; 1

+v4

(
1

6
qs
(
q3(210+2764s+11865s2)+s3(210+2764q+11865q2)

)
+O(q4s4)

)
+O(v6) (5.30)

and

Fvac; 2 = FYin
vac; 2 − v4

(
q2s2

(
14(q2 + s2) + 283qs(q + s)

)
+O(q4s4)

)
+O(v6) . (5.31)

To read off the free energy at three loops and beyond, we plug (5.29) into (5.4)–(5.6).

At three-loop order, we find

Fvac; 3 = q4s4

(
13312

25
v4 +

86528

75
v6 +O(v8)

)
+O(q4s5v4, q5s4v4) . (5.32)

To derive terms at higher orders in v for fixed q and s, we would need to expand x beyond

O(v4). Likewise, to derive terms at higher orders in q and s for fixed v, we would need

to include more terms in the sewing expansion, like p4
1p

5
2C4,5(x). Finally, the all-loop

expansion is completed by the terms25

Fvac; `>3 = q4s4

(
v4 +

13

6
v6 +O(v8)

)
·
(

4(3704 + 590c+ 125c2)

5c(22 + 5c)

) ∣∣∣
c1−`

+O(q4s5v4, q5s4v4) .

(5.33)

6 Discussion

We close with a discussion of some open questions, progressing from obvious directions for

future work to the more speculative. Some directions for future work were mentioned in

the text.

• In the realm of Rényi entropy, performing the calculation suggested in section 5.2.2 for

three intervals would give a satisfying derivation away from a short-interval expansion.

25This result should be contrasted with footnote 6 of [28].
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In addition, one can straightforwardly apply our results to the case of the n = 2

Rényi entropy for a single interval on the torus, at least in a high or low temperature

expansion. One need only perform the map between Schottky coordinates and the

temperature and interval length; this map has already been partially performed in [15,

51, 52]. No results have yet been derived for the torus case beyond one loop.

• One can consider including local operator insertions on Σ. The sewing procedure

remains a sum over sphere correlation functions, now with these extra operator in-

sertions. The operators generate non-vacuum states in the CFT. Taking Σ to be a

replica manifold, one can thus compute excited-state Rényi entropies by the sewing

procedure. Such entropies have been computed in CFT using twist-field and holo-

graphic methods (e.g. [18, 19, 53–55]). As we have tried to demonstrate, the sewing

construction is likely to provide a complementary approach that operates at finite c, so

this seems like an especially worthwhile pursuit. It would be easy, for instance, to read

off the O(c0) terms from the above procedure: these would be predictions for bulk

one-loop corrections to the Einstein action evaluated on the “punctured handlebody”.

• It would be nice to prove that nowhere in the moduli space, except at the separating

degeneration point, does the genus-two partition function truncate in a 1/c expan-

sion (whereas our method could only access the regime of small p1, p2). This seems

highly likely to be the case. Understanding the structure of the Schottky sum rules

in appendix C could also be enlightening.

• In our analytic bootstrap of section 3, we could equally have used Virasoro conformal

blocks rather than global conformal blocks. In this case, the crossed blocks are related

to the original blocks by the fusion and braiding matrices. These are known in closed

form [56], so our conclusions can also be phrased in terms of OPE coefficients of Vi-

rasoro primaries rather than quasi-primaries. The Virasoro approach is in principle

more efficient, as it will fix the four-point function in terms of even fewer pieces of

data, and it would be worthwhile to make this precise. An interesting demonstration

of this fact comes by way of the W3 correlator 〈WWWW 〉, as computed in (3.41)–

(3.42): up to the norm of W , the Virasoro approach would fix 〈WWWW 〉 without

having to compute even a single OPE coefficient.

• We briefly considered CFTs with higher-spin symmetry; it would be straightforward

to extend our computation of Zvac to higher orders for such theories. A more exciting

prospect would be to compute the partition function on Σ in the presence of insertions

that carry higher-spin charge. There is natural motivation for this from holography.

In particular, while much work has been done to construct solutions of higher-spin

gravity with nonzero higher-spin charge and solid-torus topology [57], there has been

no work on building solutions of higher-spin gravity of higher genus and with nonzero

higher-spin fields turned on. A subset of such “higher-spin handlebodies” would be

saddle points of the Euclidean higher-spin gravitational path integral with replica

boundary conditions and nonzero higher-spin charge [48]; accordingly, their action
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would be expected to match CFT computations of Rényi entropy in states with

higher-spin charge and/or chemical potentials. This calculation would be analogous

to the one peformed in [14] in the spin-2 case. Constructing such Rényi entropies

via partition functions on replica manifolds endowed with higher-spin charge, rather

than via twist fields [58] or Wilson lines [21], would be an interesting application of

the replica trick to the higher-spin setting. One might also try to make contact with

the “spin-3 entropy” of [59].

• Our results can be used to test the idea that Liouville theory provides an effective

description of irrational CFTs with large central charge (see e.g. [25] for a recent

refinement of this idea and references to earlier work). In particular, the 1/c ex-

pansion of the genus-two partition function can be checked against a diagrammatic

calculation in Liouville theory.

• Upon first glance, the relation between

Zvac; 1 =

∞∑
h1,h2=0

ph11 ph22 lim
c→∞

Ch1,h2(x) (6.1)

and the bulk graviton determinant (5.7) seems opaque. Nevertheless, these two quan-

tities are equal. Both formulae are written in terms of Schottky data, so it should be

possible to find a clean mapping between them. This would be a useful stepping stone

to writing down a closed formula for the two-loop contribution to the bulk partition

function, in analogy to the determinant (5.7). In the sewing prescription, the two-

loop result simply requires us to sum over the O(1/c) parts of Ch1,h2(x) instead of just

the O(c0) parts. Is there an equally simple prescription in the bulk, and if so do the

primitive elements of the Schottky group play a privileged role as they do at one loop?

• Part of the motivation for the present work was the one-loop exactness of the pure-

gravity partition function on the solid torus. The current understanding of this result

relies on an elegant and simple argument about Virasoro representation theory, which

can be understood holographically. It can be derived without recourse to CFT by

computing the energies of bulk excitations, or equivalently, by quantizing the phase

space given by two copies of diffS1/SL(2,R) [2]. Still, it would be very satisfying

to derive this result from a more direct perspective in the bulk. For example, while

the solid torus partition function of a pure higher-spin theory is also believed to be

one-loop exact, we do not know the analog of diffS1 in that context; there should be

a more direct argument one can make in the bulk. Understanding this exactness from

the perspective of the bulk diagrammatic expansion could provide insights useful for

higher genus.

On the other hand, a perhaps cleverer approach would be to derive the partition func-

tion from the SL(2,R)×SL(2,R) Chern-Simons formulation of 3D gravity. Einstein-Hilbert

gravity and Chern-Simons theory are non-perturbatively inequivalent, but it is believed

that the semiclassical expansion around a well-defined saddle point can be performed in
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either formulation. The Chern-Simons approach builds in the topological nature of 3D

gravity, whereas the loop expansion of 3D gravity in the metric formulation is no simpler

than it is in higher dimensions, despite the absence of propagating bulk degrees of freedom.

Presumably, such a computation would be manifestly one-loop exact, in analogy to similar

truncations in compact Chern-Simons theory [60]. (More precisely, all higher-loop effects

could be absorbed in a renormalization of the Newton constant.) A Chern-Simons ap-

proach would also have the benefit of immediately generalizing to pure higher-spin gravity.

The challenge to carrying this out is that both the gauge group and the topology are non-

compact. There has been progress in recent years in computing Chern-Simons partition

functions for non-compact gauge groups (see e.g. [61]), but the requisite technology does

not yet exist for the solid torus. This technology would represent a significant advance in

our understanding of 3D gravity.
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A An OPE limit of Ch1,h2(x)

The goal in this appendix is to show that the x → 0 behavior of Ch1,h−h1(x) is given, as

in (4.25), by

lim
c→∞

lim
x→0

Ch1,h−h1(x) ∼ O(x−h) +
1

c
O(x−h+2) +

( ∞∑
n=2

1

cn

)
O(x−h+4) (A.1)

where we again have written h2 = h− h1, and we restrict to h > h1 > 0. We are ignoring

h1- and h-dependent coefficients at each order, and displaying only the leading singular

behavior at each order in 1/c.

The upshot is that (A.1) follows from considering the t-channel OPE limit of the four-

point functions that define the Ch1,h2(x). The expansion (A.1) follows from the c-scaling

of the OPE coefficients and norms that appear in the conformal block decomposition. The

leading O(c0) term in (A.1) arises from identity exchange; the leading O(1/c) term, from

T exchange; and all higher order terms in 1/c, from exchange of all other quasi-primaries

in the Virasoro identity representation.

– 44 –



J
H
E
P
0
7
(
2
0
1
5
)
0
5
9

Let us give more detail. Recall that the Ch1,h2(x) are defined in terms of sums over

four-point functions of vertex operators,

Ch1,h2(x) =
∑

φi,ψi∈Hhi

G−1
φ1,ψ1

G−1
φ2,ψ2

〈
V out(ψ1,∞) V out(ψ2, x) V in(φ2, 1) V in(φ1, 0)

〉
(A.2)

where the Hilbert subspaces Hhi are spanned by operators of holomorphic dimensions hi.

Vertex operators V out(ψ, z) and V in(φ, z) are just chiral CFT operators ψ(z) and φ(z),

respectively, dressed with z-dependent factors. In the z → 0 limit, the dressing factors

are finite (cf. section 4.1), so we can ignore them. Thus, the x → 0 limit of Ch1,h2(x) is

simply the t-channel limit of a weighted sum over four-point functions of CFT operators,

including descendants.

A four-point function of pairwise identical quasi-primary operators of dimensions h1

and h2 can be written in a global conformal block decomposition as

〈ψ(∞)φ(x)φ(1)ψ(0)〉 = x−h
∑
O

C2
ψφO
NO

xhO2F1(hO, hO; 2hO;x) (A.3)

where CψφO are OPE coefficients, and h = h1 + h2. We are expanding this correlator in

the x → 0 channel. Four-point functions involving secondary operators can be written

using derivatives acting on an expression of the above form. For our purposes, we only

allow Virasoro descendants of the identity to run in the internal channel: O ∈ {1, T,Λ, . . .}.
Indeed, for the purposes of establishing (A.1), consideration of the exchange of these three

operators alone will be sufficient: that is, we associate the scaling in (A.1) with specific

terms in (A.3). Let us write out the first three terms in (A.3) coming from the Virasoro

identity block, O ∈ {1, T,Λ}:

〈ψ(∞)φ(x)φ(1)ψ(0)〉 = (A.4)

x−h
(
C2
ψφ1 +

2

c
C2
ψφT x

2
2F1(2, 2; 4;x) +

10

c(5c+ 22)
C2
ψφΛ x

4
2F1(4, 4; 8;x) +O(x6)

)
.

We have substituted the explicit operator norms.

When ψ and φ are in the same global conformal family, fusion onto the identity is

allowed, and Cψφ1 6= 0 and independent of c. This yields a term of order O(c0) and

O(x−h). For a given (h1, h2), there is always such a term in the definition of Ch1,h2(x),

since the latter are defined as a sum over all correlators involving operators at levels

(h1, h2). This is most obvious when h1 = h2, because Ch1,h2(x) will include correlators

of four identical operators; but even when h1 6= h2, the definition of Ch1,h2(x) includes

correlators of arbitrary derivatives of T , all of which are in the same global conformal

family. For instance, C2,4(x) includes 〈T (∞) ∂2T (x) ∂2T (1)T (0)〉, which permits fusion

onto the identity when x → 0. There are generically no cancellations among terms in the

sum (A.2). This accounts for the first term on the right-hand side of (A.1). This leading

behavior was also observed in [40].

The second term in (A.1), at O(1/c), comes from the second term in (A.4). Because

CψφT is c-independent26 and NT = c/2, this term contributes at O(1/c) compared to the

26For instance, when ψ = φ is a quasi-primary, CφφT = hNφ.
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identity exchange, but not beyond. As explained above, the definition of Ch1,h2(x) always

includes such terms. This accounts for the second term on the right-hand side of (A.1).

The final terms in (A.1), at O(1/c2) and beyond, come from exchange of the level-four

quasi-primary Λ in (A.4). Because its inverse norm has an infinite expansion in 1/c, this

will contribute a term O(x−h+4) to all orders in a 1/c expansion, thus accounting for the

remaining terms in (A.1).

B More details on the sewing construction

B.1 Operators and norms

In this section, we list the operators and their norms at the first six levels of the Virasoro

vacuum representation. To ensure that we have not missed any, it is useful to expand the

holomorphic Virasoro vacuum character, χvac:

χvac = Trvac(q
L0−c/24)

= q−c/24
∞∏
n=2

1

1− qn

≈ q−c/24(1 + q2 + q3 + 2q4 + 2q5 + 4q6 . . .) .

(B.1)

One can branch χvac into global SL(2,R) characters, thereby counting the number of quasi-

primary fields. The resulting generating function, call it χqp, is

χqp = (qc/24χvac − 1)(1− q) ≈ q2 + q4 + 2q6 + . . . . (B.2)

In terms of the degeneracy d(h) of all level h operators, the degeneracy of level h quasi-

primaries is d(h) − d(h − 1) (for h > 1). We use the shorthand O = O(0) to denote

operators.

• Level 2: there is one quasi-primary operator, the stress-energy tensor, T = L−2|0〉,
with norm NT = c/2.

• Level 3: there is one secondary operator, O3 = ∂T = L−3|0〉, with norm NO3 = 2c.

• Level 4: there are two operators,

O(1)
4 = Λ =

(
L2
−2 −

3

5
L−4

)
|0〉 , O(2)

4 = L−4|0〉 . (B.3)

The operator O(1)
4 is the commonly studied quasi-primary often denoted Λ, and O(2)

4

is secondary. Their norms are

NΛ =
c

2

(
c+

22

5

)
, NO(2)

4

= 5c . (B.4)
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• Level 5: there are two operators ,

O(1)
5 = L−1

(
L2
−2 −

3

5
L−4

)
|0〉 , O(2)

5 = L−5|0〉 , (B.5)

where both of them are secondary. Their norms are

NO(1)
5

= 4 c

(
c+

22

5

)
, NO(2)

5

= 10c . (B.6)

• Level 6: there are four operators (all acting on |0〉),

O(1)
6 = −20

63
L−6 −

8

9
L−4L−2 +

5

9
L−3L−3, (B.7)

O(2)
6 = −(60c+ 78)

(70c+ 29)
L−6 −

3(42c+ 67)

(70c+ 29)
L−4L−2 +

93

(70c+ 29)
L−3L−3 + L−2L−2L−2,

O(3)
6 = L−1L−1

(
L−2L−2 −

3

5
L−4

)
,

O(4)
6 = L−6,

where O(1)
6 and O(2)

6 are quasi-primary, and O(3)
6 and O(4)

6 are secondary. Their norms

are

NO(1)
6

=
4

63
c (70c+ 29) , NO(2)

6

=
3

4
c

(2c− 1) (5c+ 22) (7c+ 68)

(70c+ 29)
,

NO(3)
6

= 72 c

(
c+

22

5

)
, NO(4)

6

=
35

2
c .

The secondary operators L−n|0〉, n > 2 have the form ∂(n−2)T/(n−2)!, with norms n(n2−
1)c/12.

B.2 Four-point functions of vertex operators

In this section we provide more details on the transformation properties of the vertex opera-

tors which were used in computation of the four-point functions Ch1,h2(x) in subsection 4.2.

The final expressions for Ch1,h2(x) in terms of x are reported in the main text and are not

repeated here.

We will need the explicit expressions for the vertex operators at infinity. For h = 2, 3,

we have

V out(T,∞) = lim
z→∞

z4T (z)

V out(O3,∞) = lim
z→∞

(
− z6∂T (z)− 4z5T (z)

)
.

(B.8)

For h = 4, we have

V out(Λ,∞) = lim
z→∞

z8Λ(z)

V out(O(2)
4 ,∞) = lim

z→∞

(
1

2
z8∂2T (z) + 5z7∂T (z) + 10z6T (z)

)
.

(B.9)
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For h = 5, we have

V out(O(1)
5 ,∞) = lim

z→∞

(
− z10 − z9L1

)
O(1)

5 (z)

V out(O(2)
5 ,∞) = lim

z→∞

(
− 1

6
z10∂3T (z)− 3z9∂2T (z)− 15z8∂T (z)− 20z7T (z)

)
.

(B.10)

Finally, for h = 6, we have quasi-primary vertex operators

V out(O(i)
6 ,∞) = lim

z→∞
z12O(i)

6 (z), i = {1, 2} , (B.11)

and secondary vertex operators

V out(O(3)
6 ,∞) = lim

z→∞

(
z12 + z11L1 +

z10

2
L2

1

)
O(3)

6 (z),

V out(O(4)
6 ,∞) = lim

z→∞

(
1

24
z12 ∂4T (z) +

7

6
z11 ∂3T (z) +

21

2
z10 ∂2T (z)

+ 35 z9 ∂T (z) + 35 z8T (z)

)
. (B.12)

With these in hand, we start with Ch,2(x). Using the definitions

V out(T, x) = (x− 1)2 T (x)

V in(T, 1) = (x− 1)2 T (1)

V in(O, 0) = O(0)

(B.13)

that follow from section 4.1, Ch,2(x) takes the general form

Ch,2(x) = N−1
T (x− 1)4

d(h)∑
i=1

N−1

O(i)
h

〈
V out(O(i)

h ,∞) T (x) T (1) O(i)
h (0)

〉
. (B.14)

We next consider the functions Ch,3(x). For h = 3 we have

C3,3(x) = N−2
O3

〈
V out(O3,∞) V out(O3, x) V in(O3, 1) V in(O3, 0)

〉
, (B.15)

where V out(O3,∞) is given in (B.8) and

V out(O3, x) = −(x− 1)3 ∂T (x)− 4(x− 1)2 T (x),

V in(O3, 1) = (x− 1)3∂ T (1)− 4 (x− 1)2T (1) . (B.16)

The expressions for C4,3(x) and C5,3(x) can then be easily obtained using (B.16) and the

vertex operators given above.
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C Schottky parameters in the separating degeneration limit

Here, we provide details of the map between Schottky space and the period matrix in the

separating degeneration limit considered in section 5.3:

{p1, p2, x} 7→ {q, s, v} . (C.1)

The final result, perturbative in v but non-perturbative in q and s, is

p1 = q

(
1− v2(2Êσ2 )− v4

(
2(Êσ2 )2 +

2

3
Êρ2 Ê

σ
2 −

1

6
Êσ4 +

10

3
Êρ2 Ê

σ
4

)
+O(v6)

)
p2 = p1(σ ↔ ρ)

x = ev − 4Êσ2 Ê
ρ
2(v3 + v4) +O(v5qs) .

(C.2)

The hatted Eisenstein series were defined in (5.21). The first two relations were derived

in [28]; here, we will derive the last one.

The computation is an exercise in series solutions of algebraic equations. We make a

series ansatz for x,

x =
∞∑
j=0

xj(q, s)v
j , (C.3)

plug this and the expressions for p1 and p2 in (C.2) into the perturbative Schottky relation

ev = x+ x
∞∑

n,m=1

pn1p
m
2

n+m∑
r=−n−m

d(n,m, r)xr , (C.4)

and solve order-by-order for xj(q, s).

An immediate question that may occur to the reader is how we are able to obtain a

result (C.2) that is non-perturbative in q and s, despite only having access to d(n,m, r) to

finite order in (n,m). The answer is that we were able to infer various sum rules obeyed

by the d(n,m, r) that we believe to hold for all (n,m):

n+m∑
r=−n−m

d(n,m, r) = 0 (C.5a)

n+m∑
r=−n−m

d(n,m, r) r = 0 (C.5b)

n+m∑
r=−n−m

d(n,m, r) r2 = 0 (C.5c)

∞∑
n,m=1

qnsm
n+m∑

r=−n−m
d(n,m, r) r3 = 24Êρ2 Ê

σ
2 (C.5d)

n+m∑
r=−n−m

d(n,m, r) r4 = 0 (C.5e)
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where Êρ2 was defined in (5.21). We have also found a set of sum rules obeyed by the

c(n,m, |r|) that appear in the other two Schottky relations (2.17):

n+m∑
r=−n−m

c(n,m, |r|) = 0 , (n,m) 6= (0, 0)

n+m∑
r=−n−m

c(n,m, |r|) r2 = 0 , n 6= 0 (C.6)

∞∑
m=1

sm
m∑

r=−m
c(0,m, |r|) r2 = 4Ês2 .

We have checked all of these identities through m = n = 7 using the tables of [40].27

Actually, we have proven (C.6), as well as (C.5a)–(C.5c). Proof of (C.6) follows from

comparing a series solution for p1 and p2 using (2.17) to the known solution (C.2), and

demanding consistency through O(v2). Proof of (C.5a)–(C.5c) follows from demanding

that all three perturbative relations in (2.17) yield the same result for {p1, p2, x}: hence,

having proven (C.6), we can use these to derive sum rules obeyed by d(n,m, r). Proof

of (C.5d) and (C.5e) is undoubtedly possible using similar methods.

With these sum rules in hand, we proceed to invert (C.4). At O(v0), we must solve

1 = x0(q, s) + x0(q, s)
∞∑

n,m=1

qnsm
n+m∑

r=−n−m
d(n,m, r)x0(q, s)r . (C.7)

But (C.5a) implies that x0(q, s) = 1 solves (C.7). At O(v), we must solve

1 = x1(q, s) + x1(q, s)
∞∑

n,m=1

qnsm
n+m∑

r=−n−m
d(n,m, r)r . (C.8)

This time, (C.5b) implies that the second term vanishes, leaving x1(q, s) = 1. The analysis

at O(v2) is nearly identical, and (C.5c) implies x2(q, s) = 1/2.

At O(v3), the first non-trivial sum appears in the series expansion:

1

3!
= x3(q, s) +

1

3!

∞∑
n,m=1

qnsm
n+m∑

r=−n−m
d(n,m, r)r3 . (C.9)

Plugging in (C.5d) leads to

x3(q, s) =
1

3!
− 4Êρ2 Ê

σ
2 . (C.10)

Finally, at O(v4), we must solve

1

4!
= x4(q, s) +

1

3!

∞∑
n,m=1

qnsm
∑
r

d(n,m, r)r3 +
1

4!

∞∑
n,m=1

qnsm
∑
r

d(n,m, r)r4 . (C.11)

27We are grateful to the authors of [40] for sharing the relevant Mathematica notebooks.
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The final sum rule (C.5e) eliminates the last term, and (C.10) leaves us with

x4(q, s) =
1

4!
− 4Êρ2 Ê

σ
2 . (C.12)

Putting this all together, we find the advertised result in (C.2).

We believe that the above sum rules may have interesting applications in other studies

of genus-two Riemann surfaces. It would be interesting to understand, for instance, why the

sum (C.5d) factorizes. A systematic exploration of all sum rules obeyed by these coefficients

would be worthwhile. It seems likely that higher order sum rules may be expressible in

terms of holomorphic Eisenstein series (5.21).

D The order-c part of the free energy and the sewing construction

In subsections 2.2 and 4.1, we reviewed the sewing construction, which expresses the parti-

tion function of an arbitrary CFT on a genus-g Riemann surface in terms of 2g-point func-

tions on the sphere, as illustrated in figure 4. However, the formulas in those subsections,

such as (4.4), only give the order-c0 and higher (in 1/c) terms in the free energy F = − lnZ;

they miss the order-c term. (This term depends on the full metric on the Riemann surface,

not just its complex structure; in other words it depends on the choice of representative of

the Weyl class.) This is adequate for the purposes of this paper, since our main interest

is in the higher-order terms in 1/c. However, for completeness, in this appendix we will

explain how to obtain the order-c term within the context of the sewing construction.

As an illustrative example, consider an arbitrary CFT on a flat torus with modular

parameter τ . The partition function is well-known to be

Z(τ) = (pp̄)−c/24
∑
i

phi p̄h̃i = (pp̄)−c/24
∑
h,h̃

d(h, h̃)php̄h̃ , (D.1)

where p := e2πiτ and d(h, h̃) is the multiplicity of operators of weights h, h̃. To calculate

Z(τ) using (4.4) (more precisely, its generalization including the antiholomorphic sector),

we need to compute the coefficient Ch,h̃. Applying the definitions (4.5) and (4.20), we

find simply Ch,h̃ = d(h, h̃). Hence (4.4) would give Z(τ) =
∑

h,h̃ d(h, h̃)php̄h̃; thus, we are

missing the factor (pp̄)−c/24.

We proceed with a brief recap of the sewing construction.28 For convenience we will

assume that the metric on our Riemann surface M is smooth. We now cut it along a circle

and glue in two disks, which we call D1 and D2, to obtain a new manifold M0 (which

may be connected or disconnected). We choose the metric on these disks in such a way

that the metric on the new surface is still smooth. This implies that D1 and D2 can be

glued together to make a sphere with a smooth metric, which we’ll call S. We consider

coordinates z1,2 on D1,2 which, when extended to S, obey z1 = 1/z2.

28We will closely follow the discussion of the sewing construction in sections 9.3 and 9.4 of [62]. However,

that reference considered CFTs with vanishing total central charge (in the context of string theory), so the

issue we are focusing on here did not arise there. When comparing to that reference, note also that the

correlators there are unnormalized, whereas (as throughout this paper) ours are normalized.
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The path integral on M can be computed by inserting a complete set of states on the

circle where it has been cut. By the state-operator mapping, this is equivalent to inserting

a complete set of operators on D1,2 at z1,2 = 0, with an appropriate inverse metric Gij (to

be determined below) on the space of operators:

Z(M) = Z(M0)
∑
i,j

Gij〈O(z1)
i O(z2)

j 〉M0 , (D.2)

where the superscripts denote that Oi is inserted at the origin of the z1 and Oj at the

origin of the z2 coordinate system. More generally, we can start with arbitrary operators

Oa · · · on M :

Z(M)〈Oa · · ·〉M = Z(M0)
∑
i,j

Gij〈Oa · · · O(z1)
i O(z2)

j 〉M0 . (D.3)

To fix the inverse metric Gij , we consider the case where M happens to include a patch

D′1 that is diffeomorphic to D1, with an operator Ok inserted at z′1 = 0. Cutting M along

the boundary of D′1 and gluing in D1 and D2 yields M0 = M ∪ S, where the S is covered

by coordinates z′1 and z2 = 1/z′1. Equation (D.3) then becomes:

Z(M)〈Oa · · · O(z′1)
k 〉M = Z(M0)

∑
i,j

Gij〈Oa · · · O(z′1)
k O(z1)

i O(z2)
j 〉M0

= Z(M)Z(S)
∑
i,j

Gij〈Oa · · · O(z1)
i 〉M 〈O(z2)

j O(z′1)
k 〉S . (D.4)

For this to hold for arbitrary Ok and arbitrary insertions Oa · · · , it must be that

Gij = Z(S)〈O(z1)
i O(z2)

j 〉S = Z(S)Gij , (D.5)

where Gij is the Zamolodchikov metric.

Now that we have fixed Gij , the partition function (D.2) becomes

Z(M) =
Z(M0)

Z(S)

∑
i,j

Gij〈O(z1)
i O(z2)

j 〉M0 . (D.6)

It is often useful to add a parameter p to the sewing construction, so that the coordinate

identification is z1z2 = p. (Even though p can be absorbed in a coordinate transformation

on M0, it is useful to fix the coordinate system on M0 and use p to vary the modulus of

M .) This can be done by replacing z2 by z′2 in the formulas above, and defining z2 = pz′2.

We have O(z′2)
j = phj p̄h̃jO(z2)

j , so

Z(M) =
Z(M0)

Z(S)

∑
i,j

phj p̄h̃jGij〈O(z1)
i O(z2)

j 〉M0 . (D.7)

Cutting M along g non-contractible cycles, where g is its genus, reduces it to a

sphere. This yields the formula (4.4), except with a product of sphere partition functions

Z(S1) · · ·Z(Sg) in the denominator. The free energy on any sphere is proportional to c, so

– 52 –
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these factors contribute such a term to F (M). (The coordinate transformation from local

coordinates z1,2 in the vicinity of each operator insertion to the single coordinate z covering

the plane leads to the definition of the operators V out, V in explained in subsection 4.1.)

To illustrate the application of (D.7), let us return to the example of the flat torus.

Set β = =τ , and let the horizontal cycle have circumference 2π; thus the total area is 4π2β.

We will cut it along the horizontal cycle. For D1 and D2 we use unit round hemispheres.

Thus S is a round unit sphere, while M0 is a cylinder of circumference 2π and length 2πβ

with round endcaps. In the next paragraph we will compute the ratio Z(M0)/Z(S) using

the Liouville action, finding eπcβ/6 = (pp̄)−c/24, precisely the prefactor appearing in the

expression (D.1) for the torus partition function.

In order to compute Z(M0)/Z(S), we will compute the change in the partition function

Z(M0) under a small change in β, and then integrate the result up from β = 0 (noting

that M0|β=0 = S). Under a Weyl transformation, ds2 = e2ωdŝ2, the partition function gets

transformed by the Liouville action:

Z = eSLẐ , SL =
c

24π

∫ √
ĝ
(
ĝab∂aω∂bω + R̂ω

)
. (D.8)

We will let dŝ2 be the metric with cylinder length 2πβ, and ds2 with cylinder length

2π(β + δβ). Hence the Weyl transformation relating them is close to the identity, with

ω of order δβ, and we can work to first order in ω. Since the cylinders have the same

circumference, ω vanishes on the cylinder. ω can also be taken to vanish on, say, the

bottom endcap, while on the top endcap it transforms the hemisphere into a hemisphere

attached to a thin cylinder of height 2πδβ. On this endcap, R̂ = 2, so∫ √
ĝR̂ω =

∫ √
ĝ2ω =

∫ √
g −

∫ √
ĝ = 4π2δβ . (D.9)

Hence

SL =
πc

6
δβ . (D.10)

Integrating from β = 0, we find

lnZ(M0) = lnZ(S) +
πc

6
β , (D.11)

as promised.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[50] A. Coser, L. Tagliacozzo and E. Tonni, On Rényi entropies of disjoint intervals in conformal

field theory, J. Stat. Mech. 01 (2014) P01008 [arXiv:1309.2189] [INSPIRE].
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