35 research outputs found

    Spatiotemporal variations in exposure: Chagas disease in Colombia as a case study

    Get PDF
    Age-stratified serosurvey data are often used to understand spatiotemporal trends in disease incidence and exposure through estimating the Force-of-Infection (FoI). Typically, median or mean FoI estimates are used as the response variable in predictive models, often overlooking the uncertainty in estimated FoI values when fitting models and evaluating their predictive ability. To assess how this uncertainty impact predictions, we compared three approaches with three levels of uncertainty integration. We propose a performance indicator to assess how predictions reflect initial uncertainty. In Colombia, 76 serosurveys (1980–2014) conducted at municipality level provided age-stratified Chagas disease prevalence data. The yearly FoI was estimated at the serosurvey level using a time-varying catalytic model. Environmental, demographic and entomological predictors were used to fit and predict the FoI at municipality level from 1980 to 2010 across Colombia. A stratified bootstrap method was used to fit the models without temporal autocorrelation at the serosurvey level. The predictive ability of each model was evaluated to select the best-fit models within urban, rural and (Amerindian) indigenous settings. Model averaging, with the 10 best-fit models identified, was used to generate predictions. Our analysis shows a risk of overconfidence in model predictions when median estimates of FoI alone are used to fit and evaluate models, failing to account for uncertainty in FoI estimates. Our proposed methodology fully propagates uncertainty in the estimated FoI onto the generated predictions, providing realistic assessments of both central tendency and current uncertainty surrounding exposure to Chagas disease

    From serological surveys to disease burden: a modelling pipeline for Chagas disease.

    Get PDF
    In 2012, the World Health Organization (WHO) set the elimination of Chagas disease intradomiciliary vectorial transmission as a goal by 2020. After a decade, some progress has been made, but the new 2021–2030 WHO roadmap has set even more ambitious targets. Innovative and robust modelling methods are required to monitor progress towards these goals. We present a modelling pipeline using local seroprevalence data to obtain national disease burden estimates by disease stage. Firstly, local seroprevalence information is used to estimate spatio-temporal trends in the Force-of-Infection (FoI). FoI estimates are then used to predict such trends across larger and fine-scale geographical areas. Finally, predicted FoI values are used to estimate disease burden based on a disease progression model. Using Colombia as a case study, we estimated that the number of infected people would reach 506 000 (95% credible interval (CrI) = 395 000–648 000) in 2020 with a 1.0% (95%CrI = 0.8–1.3%) prevalence in the general population and 2400 (95%CrI = 1900–3400) deaths (approx. 0.5% of those infected). The interplay between a decrease in infection exposure (FoI and relative proportion of acute cases) was overcompensated by a large increase in population size and gradual population ageing, leading to an increase in the absolute number of Chagas disease cases over time. This article is part of the theme issue ‘Challenges and opportunities in the fight against neglected tropical diseases: a decade from the London Declaration on NTDs’

    Potencial inseticida de plantas da família Annonaceae

    Full text link

    Malaria vector species in Colombia: a review

    Full text link
    Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai) is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species' geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species

    Efficacy of Major Plant Extracts/Molecules on Field Insect Pests

    Get PDF
    Insect pests are considered the major hurdle in enhancing the production and productivity of any farming system. The use of conventional synthetic pesticides has led to the emergence of pesticide-resistant insects, environmental pollution, and negative effects on natural enemies, which have caused an ecological imbalance of the predator-prey ratio and human health hazards; therefore, eco-friendly alternative strategies are required. The plant kingdom, a rich repertoire of secondary metabolites, can be tapped as an alternative for insect pest management strategies. A number of plants have been documented to have insecticidal properties against various orders of insects in vitro by acting as antifeedants, repellents, sterilant and oviposition deterrents, etc. However, only a few plant compounds are applicable at the field level or presently commercialised. Here, we have provided an overview of the broad-spectrum insecticidal activity of plant compounds from neem, Annona, Pongamia, and Jatropha. Additionally, the impact of medicinal plants, herbs, spices, and essential oils has been reviewed briefl

    Ebola virus disease and critical illness

    Get PDF

    Community-based sampling methods for surveillance of the Chagas disease vector, Triatoma dimidiata (Hemiptera: Reduviidae: Triatominae).

    No full text
    In Guatemala, the most widespread vector of Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae), the causative agent of Chagas disease, is Triatoma dimidiata (Latreille) (Hemiptera: Reduviidae: Triatominae). T. dimidiata is native to Guatemala and is present in both domestic and sylvatic habitats. Consequently, control of T. dimidiata is difficult because after successful elimination from homes, individual insects can recolonize homes from the surrounding environment. Therefore, intensive long-term surveillance of this species is essential to ensure adequate control is achieved. Manual inspection for signs of infestation, the current method used to monitor Triatominae throughout Central and South America, is labor and time-consuming, so cost-effective alternatives are needed. The current study compared the effectiveness of the current method of surveillance of T. dimidiata with community-based techniques of G6mez-Nuñez sensor boxes, collection and observation of bugs by householders, and presence of triatomine-like feces on walls. Although manual inspection was the most sensitive method when used alone, collection by householders also was sensitive and specific and involved less effort. Sensor boxes were not sensitive indicators of T. dimidiata infestation when used alone. Two recorded variables, visual inspection for feces and the sighting of bugs by householders, were sensitive and specific indicators of infestation, and in combination with collection by householders and sensor boxes these methods were significantly more likely to detect infestations than manual inspection alone. A surveillance program that combines multiple community-based techniques should have low cost and involve minimal effort from the government and at the same time promote sustainable community involvement in disease prevention
    corecore