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In 2012, the World Health Organization (WHO) set the elimination of
Chagas disease intradomiciliary vectorial transmission as a goal by 2020.
After a decade, some progress has been made, but the new 2021–2030
WHO roadmap has set even more ambitious targets. Innovative and
robust modelling methods are required to monitor progress towards these
goals. We present a modelling pipeline using local seroprevalence data to
obtain national disease burden estimates by disease stage. Firstly, local ser-
oprevalence information is used to estimate spatio-temporal trends in the
Force-of-Infection (FoI). FoI estimates are then used to predict such trends
across larger and fine-scale geographical areas. Finally, predicted FoI
values are used to estimate disease burden based on a disease progression
model. Using Colombia as a case study, we estimated that the number of
infected people would reach 506 000 (95% credible interval (CrI) = 395 000–
648 000) in 2020 with a 1.0% (95%CrI = 0.8–1.3%) prevalence in the general
population and 2400 (95%CrI = 1900–3400) deaths (approx. 0.5% of those
infected). The interplay between a decrease in infection exposure (FoI and
relative proportion of acute cases) was overcompensated by a large increase
in population size and gradual population ageing, leading to an increase in
the absolute number of Chagas disease cases over time.

This article is part of the theme issue ‘Challenges and opportunities in
the fight against neglected tropical diseases: a decade from the London
Declaration on NTDs’.

1. Introduction
Chagas disease is a neglected tropical disease (NTD) caused by the protozoan para-
site Trypanosoma cruzi. Vectorial transmission (by reduviid, triatomine bugs) is the
main, but not exclusive, transmission route. While Chagas disease is endemic in
21 Latin American countries, population migration has resulted in its globalization.
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Infections can remain asymptomatic formanyyears,with20–35%
of those infected eventually developing clinical manifestations
and requiring medical interventions [1]. Such interventions
(including treatment) aim at alleviating symptoms and/or redu-
cing disease progression when possible. Disease control efforts
have mainly focused on infection prevention (e.g. through
vector control, education and housing improvement) and testing
for prompt identification of asymptomatic cases [2].

In 2012, the World Health Organization (WHO) set the
elimination of intradomiciliary vectorial transmission in the
Americas by 2020 as a goal in its first NTD roadmap [3].
After a decade, progress has been made, but the new 2021–
2030 WHO roadmap on NTDs is even more ambitious, pro-
posing that all routes of transmission be interrupted in
nearly 40% of endemic countries by 2030 [4]. The application
of innovative and robust statistical methods can help to moni-
tor the epidemiological situation and the progress to be made
to meet this challenge. To this end, estimating the spatio-tem-
poral variations in disease exposure is critical, but this is
hampered by weak surveillance [2]. For example, in Colom-
bia in 2021, 306 chronic and 172 acute cases were reported,
with only 170 and 14, respectively, of them being confirmed
[5]. By contrast, estimations of the number of cases for the
country from WHO, Global Burden Model (GBM) and
others ranged between 186 000 and 438 000 for the 2005–
2010 period [1,6–8].

Chagas disease is a long-lasting disease. Therefore, current
prevalence of infection or disease does not truly reflect the
current transmission trends. For instance, high prevalence
potentially reflects a high level of past transmission rather
than current exposure. Usingmathematical modelling, seropre-
valence studies can be used to reconstruct temporal trends in
the Force-of-Infection (FoI, the per-susceptible rate of parasite
acquisition). Therefore, age-stratified seroprevalence studies
have the potential to provide a largely untapped resource to
predict spatio-temporal trends in Chagas disease incidence,
which can, in turn, be used to predict the burden of Chagas dis-
ease over time and space at a resolution much finer than that
available from current national estimates.

Seroprevalence surveys have been used to estimate past
trends in exposure in the context of Chagas disease [9],
dengue [10–13], malaria [14], schistosomiasis [15] and
yellow fever [16]. Provided enough surveys are available, pre-
dictive models can be used to estimate spatio-temporal trends
in exposure for Chagas disease [17] and other infections
[10,11,16,18]. The crucial next step is linking such trends
with models of disease progression so robust estimates of dis-
ease burden can be obtained to better target the necessary
interventions [7]. However, in some of the applications
mentioned above, estimates of the FoI have been assumed
to be constant over time [10,11,19], or only average FoI
values have been used to fit predictive models [10,13,16,19],
substantially neglecting the associated uncertainty. Therefore,
appropriately propagating the uncertainty surrounding each
step is essential for reliable estimation of disease burden.

In this paper, we present a modelling pipeline to estimate
Chagas disease incidence and burden of disease. We collated
information from 76 seroprevalence studies in Colombia, from
published and unpublished sources between 1990 and 2020.
Those studies were used to estimate local temporal trends in
the FoI. Spatio-temporal predictive models were used to
obtain FoI estimates over the last seven decades at the munici-
pality level across Colombia. Finally, those estimates were
used in an age-structured compartmental model linking infec-
tion to disease states to estimate the burden of Chagas disease
and its spatial and temporal heterogeneities.

Our study highlights the benefit of using currently avail-
able but largely under-used seroprevalence studies to inform
the burden of Chagas disease. Our modelling pipeline relies
on robust statistical modelling that propagates the various
uncertainties at each step, providing a more realistic assess-
ment of the past and current epidemiological situation. We
also discuss its applications for estimating disease burden
across the remaining Chagas disease-endemic countries in
the Americas.
2. Models and methods
(a) The DICTUM platform
With support from the Pan American Health Organization
(PAHO, the Regional WHO office for the Americas), the
‘Decreasing the Impact of Chagas Disease Through Modelling’
(DICTUM) platform has been created to collate, standardize
and communicate data relevant to Chagas disease epidemiol-
ogy, including information on serosurveys, vector surveillance
and blood-bank screening. A key aim is to use the DICTUM
platform to inform public health professionals on crucial
aspects of Chagas disease epidemiology; for instance, by
obtaining estimates of the number of asymptomatic, chronic,
and severe cases by age class, allowing targeting of diagnostics
and treatment activities.

The process of estimating the burden of Chagas disease
using local serosurveys (figure 1) involves three steps:

(1) Step 1: Local seroprevalence information is used to esti-
mate local trends in temporal exposure (quantified by
the FoI).

(2) Step 2: Exposure estimates from various surveys are used
to predict spatio-temporal trends across larger geographi-
cal areas (using Random Forest (RF) models, as in [20]).

(3) Step 3: Predicted exposure estimates are used at a fine
spatial resolution to predict disease burden based on a
disease progression model.

Special attention is given to propagating uncertainty
between steps and at different spatial and temporal scales.
Electronic supplementary material, ’Models and methods’,
text S1–S3, provides a detailed account of Steps 1–3, with
electronic supplementary material, text S2.2 describing the
implementation of the RF models and the integration of
uncertainty.

(b) Step 1: Force-of-Infection at the serosurvey level
(yearly Force-of-Infection catalytic model)

Under the assumption that antibodies are life-long, age-
specific seroprevalence is a reflection of the cumulative
incidence, and thus, by using catalytic models we can disen-
tangle the rate at which the population became infected,
namely the Force-of-Infection (FoI) [8]. For these FoI
models, we assumed (a) no age-dependency in transmission,
(b) no seroreversion and (c) no specific migration due to
Chagas disease infection status. We relied on 76 (unique) ser-
ological age-stratified local surveys (serosurveys) conducted
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Figure 1. Modelling pipeline, from local serosurveys to sub-national yearly disease burden estimates. Using local point seroprevalence age-stratified data (a), the
modelling pipeline uses a Force-of-Infection (FoI) catalytic model (b) to estimate yearly FoI local point estimates (c). Then, a set of covariate predictors (d ) are used
as input for the FoI Random Forest predictive model (e) to obtain the predicted yearly FoI values at municipality level ( f ). This information is then combined with
detailed demographic information at municipality level over time (g) into a detailed disease burden and progression model (h) to generate, as final output, the
prevalence by year and by age class of different stages of Chagas disease (including mortality) at the municipality level and burden of disease information across the
country at the municipality level (i) while propagating uncertainty from one model to another.
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in Colombia at the municipality level (electronic supplemen-
tary material, figure S1 and table S1). These age-stratified
serosurveys were used to fit a Bayesian catalytic model and
obtain yearly estimates of the local FoI (in the ‘catchment
areas’), from the birth of the oldest participant to the year
of the survey. (We refer to those municipalities where at
least one serosurvey was conducted as municipalities ‘in
catchment areas’ [20].) Electronic supplementary material,
text S1.1–S1.5 describes the catalytic models used. For
those municipalities that have more than one serosurvey con-
ducted at different times (figure 1a), the FoI was estimated
separately but these estimates were reconciled as described
in Step 2 below.

(c) Step 2: Force-of-Infection at the municipality level
(Random Forest predictive model)

(i) Predictors included
The second step aimed to predict the FoI in areas where no
serosurveys had been conducted (i.e. outside the catchment
areas), to obtain yearly FoI predictions across the entire
country, at the municipality level (electronic supplementary
material, text S2). Informed by previous studies [17,20], and
in order to build a pipeline that could be applied in other
countries, the predictors selected are available across Latin
America and include characteristics of the serosurveys as
well as spatio-temporal, climatic, environmental, demo-
graphic and socio-economic predictors as described below:
Serosurvey characteristics. The setting where the serosurvey
was conducted was defined as urban, rural, indigenous
or mixed (composed of urban and rural settings; see elec-
tronic supplementary material, S2.1.1 for details on how
mixed settings surveys were used). The urban/rural defi-
nition follows government guidelines [21].

Spatio-temporal factors. Large urban centres, with a population
of >100 000 inhabitants in 1985, were not included in the
catchment area of the serosurveys. These represent about
3% of the municipalities (33 out of the 1122 municipalities
of Colombia). Therefore, the FoI predictions made relate to
small to medium-sized towns/cities. The year when the ser-
osurvey was conducted was included to correct for a
selection bias present in the early serosurveys, as those con-
ducted before the year 2000 largely focused on high-risk
populations [17], especially in rural settings. We allowed
for a temporal trend by including the ‘years’ of each FoI
‘observation’ as a covariate, but assume that other
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predictors would account for spatial heterogeneities and
therefore latitude and longitude were not included [22].

Climatic and environmental predictors. We focused on climatic
variables and indicators for presence of triatomine
vectors. BioClim data for Colombia were collated between
1979 and 2013 on a 1 km2 scale. Following the triatomine
niche modelling literature [23–34], we focused on relative
day–night temperature differences (Bio03), median
minimum temperature of the coldest month (Bio06), and
seasonality of precipitation (Bio15). We included addi-
tional predictors based on available literature, included
median municipality elevation [26,30,34,35] and normal-
ized difference vegetation index (NDVI) [26,30,34,36,37].
The year when a municipality was certified free from intra-
domiciliary transmission was used as a predictor in the
model. Our analysis did not use further vector indicators
to keep the pipeline flexible in terms of availability of
country-specific information. We therefore implicitly
assume that the environmental variables included above
would encapsulate such information.

Demographic and socio-economic predictors. Population size
and proportion of the municipal population living in
urban settings were also included along with an integrated
public use microdata series (IPUMS) indicator characteriz-
ing the proportion of houses with unfinished floors [38],
a proxy for poverty with relevance to Chagas disease
(housing conditions being highly correlated with vectorial
intradomiciliary infestation [39]).

A full description of the predictors is given in electronic
supplementary material, text S2.1, table S2, and figures S2–
S21).
(ii) Model definition
We used the available collated data to predict the spatio-
temporal trends in the FoI between 1950 and 2020, at the
municipality level across Colombia using an RF regression
model [40]. Following previous work [20], a nested
resampling was applied for model-tuning with a spatial
resampling strategy. In particular, and to partially account
for sampling bias, a spatial resampling was used to assess
the predictive ability of the model in spatial areas that were
not included in the fitting of the model. Cross-validation
(CV) was used to assess model performance, as described
in electronic supplementary material, text S2.2. The impor-
tance of each predictor, i.e. the relative contribution of this
variable in the model, was extracted and predictions were cal-
culated (see electronic supplementary material, §S2.2 for
details). To propagate the uncertainty inherited from the cal-
culation of the FoI, the fitting and performance evaluation
was repeated with 100 bootstrap samples from the posterior
distribution of the FoI.

A composite indicator was used to assess model perform-
ance, including an estimated mean of the coefficient of
determination (R2) (calculated among the cross-validation
(CV) set) and the percentage of overlap between predicted
and ‘observed’ distributions of the FoI (using the function
‘overlap’ from the R package ‘overlapping’ [40]), with
‘observed’ distribution referring to the full posterior distri-
bution of the FoI estimated with the catalytic model, as
done in [20]. This performance indicator ensured that predic-
tions reflected the central tendency, while also correctly
accounting for the uncertainty in the response variable. The
uncertainty was measured using the median absolute devi-
ation coefficient of variation (MAD-CV), which is a
coefficient of variation based on the median to account for
the asymmetrical distribution of the FoI [41]. Each predictor
is then ranked by its importance, the importance reflects the
usefulness of the predictor in the model by quantifying
how often the predictor has been used and how much var-
iance it helps to explain. More detail on the modelling
process is available in electronic supplementary material,
text S2.2 and figure S21.

As previously mentioned, serosurveys were not available
for large cities; therefore, our predictions of ‘urban’ exposure
were representative of small to medium cities, and not of
large cities. For cities with a population size >100 000 in
1985 (based on National Administrative Department of Stat-
istics (DANE) estimates [21]), the prevalence observed in
blood banks (voluntary donors between 18 and 65 years of
age) was used to estimate a time-constant FoI.
(d) Step 3: from Force-of-Infection to disease burden
(Chagas Disease Burden Model)

To estimate the spatio-temporal trends in the burden of
Chagas disease in Colombia, we developed a model of dis-
ease progression (figure 2). The disease progression model
is an age-specific compartmental model that estimates the
prevalence of each stage of the disease for each age class,
using parameters that describe disease progression and mor-
tality (detailed in electronic supplementary material, text S3
and tables S3–S5).

In the progression model, individuals may acquire the
parasite at a rate specified by the predicted, municipality-
specific FoI for a given year. Following infection, some indi-
viduals may present no or mild symptoms, while a given
proportion may develop acute symptoms (i.e. acute phase
of Chagas disease), with symptoms including cardiomyopa-
thy. Cases with no or mild symptoms transition to the
indeterminate phase, during which they will remain largely
asymptomatic. Cases in the indeterminate and severe acute
phase can progress to the mild and thereafter severe chronic
phases (electronic supplementary material, figure S22).

Individuals in the acute, chronic mild and chronic severe
phases contribute most to the mortality associated with
Chagas disease [42]. Progression to mild and severe chronic
phases (e.g. with mild or severe cardiomyopathy) may be
associated with co-morbidities rather than T. cruzi infection
itself. We, therefore, allowed all individuals, infected and
non-infected, to transition to those phases regardless of T.
cruzi infection status. Digestive forms of Chagas disease (e.g.
megaoesophagus or megacolon) were not included in this
model as they are uncommon in Colombia [7] (but would
have to be taken into account for other endemic countries).

From this progression model, we tracked, for each yearly
cohort, the proportion of individuals in each stage, as well as
the yearly proportion of the cohort deaths that were directly
attributable to T. cruzi infection. Cohort size over time was
informed by census data, while yearly mortality per cohort
was informed by death record line-listing officially estimated
[21]. The uncertainty associated with the estimated preva-
lence and the numbers of cases for each disease stage and/
or death was characterized by the interquartile range divided
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heart disease before becoming infected with Trypanosoma cruzi. For each compartment in the model, the age class-specific prevalence of each stage was calculated
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by the median (i.e. a measure of uncertainty relative to the
central estimate).

All the analyses were conducted using R and its environ-
ment RStudio (https://www.posit.co/); Bayesian FoI models
were fitted using RStan (https://mc-stan.org/), and the
maps were prepared using QGIS 3.16.3-Hannover (https://
www.qgis.org/es/site/).
3. Results
(a) Force-of-Infection at the serosurvey level
The age-stratified seroprevalence data were used to back-calcu-
late the FoI using a time-varying FoI catalytic model [9].
Figure 3 presents the fitting for 76 surveys. Serosurvey-specific
estimated FoI, convergence parameters and residual plots are
provided in electronic supplementary material, text S4 and
figures S24–S26. Note that some serosurveys were targeted at
younger age classes, leading to larger sample sizes among
them and to larger uncertainty of the predicted seroprevalence
for older age classes.

(b) Predicted yearly Force-of-Infection at the municipal
level

The RF predictive model of the FoI showed good performance,
with a coefficient of determination (R2) on the CV set of 64% in
urban and 71% in rural areas. Model uncertainty was well
propagated, with predicted and observed FoI distributions
showing an overlap of 59% (electronic supplementary
material, text S5, table S6 and figures S26 and S27).

To accurately predict FoI values, inclusion, as a predictor,
of the year when the serosurvey was conducted was essential.
The importance of this predictor in the model (which rep-
resents how helpful the predictor has been to the models)
reached 99.2 (table 1). Accounting for setting type was also
crucial, especially distinguishing between indigenous versus
non-indigenous settings (importance of 87.7). Further account-
ing for differences between urban and rural settings had more
marginal importance (around 11). All environmental (exclud-
ing NDVI), demographic and socio-economic predictors
substantially improved the fit, with importance ranging from
19.0 to 43.7. Both year of the FoI and NDVI were associated
with more limited improvement (approx. 10).

Predicted FoI across Colombia showed similar patterns in
urban and rural settings (figure 4), with strong spatial hetero-
geneity and a substantial decrease in infection exposure over
time, especially in the Andean and northeast regions. In
urban settings, the median of the municipal FoI ranged
from 2.0 × 10−4 to 2.8 × 10−3 new infections per susceptible
per year in 1995, and from 1.6 × 10−4 to 2.7 × 10−3 in 2020 (a
4 to 20% reduction). In rural settings the values ranged
from 2.1 × 10−4 to 2.8 × 10−3 in 1995 and from 1.6–1.8 × 10−4

to 2.8 × 10−3 in 2020 (a 14 to 24% reduction). Uncertainty
decreased slightly over time (with high uncertainty
observed for 9% of the municipalities in 1995 and for 8% in
2020 across urban and rural settings), and was larger in
the south of the country (where fewer surveys were avail-
able). In this context, high uncertainty was defined as a
MAD-CV above 2.
(c) Burden model over 1985–2020
Chagas disease prevalence showed spatial heterogeneity, with
the northern part of the country generally indicating higher
FoI values (figure 4). The prevalence of infection was higher
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in rural areas, with a municipal median and interquartile range
(IQR) prevalence in 2020 of 1.36% [1.15–1.57%] in rural settings,
and 1.26% [1.10–1.45%] in urban areas irrespective of the
population size of each municipality. However, given the
higher population size in urban settings (76% of the total popu-
lation in 2020), 61% of the predicted cases belonged to urban



Table 1. Ranking of the importance of the predictors used in the Random
Forest model for predicting the Force-of-Infection of Chagas disease in
Colombia at the municipal level.

predictor importance

serosurvey characteristics:

year when the serosurvey was conducted 99.2

setting type:

urban 11.1

rural 10.9

indigenous 87.7

temporal coordinates:

year 11.7

environmental predictors:

year of certification for intradomiciliated vector

elimination

34.7

isothermality (Bio03) 43.7

minimum temperature of the coldest month

(Bio06)

26.8

seasonality of precipitation (Bio15) 36.4

normalized difference vegetation index (NDVI) 9.9

elevation 29.3

demographic predictors:

population size 36.5

proportion of urban population 29

proportion of household with unfinished floor

material

19
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areas in 2020 (electronic supplementary material, text S5 and
figures S28–S31).

While the FoI showed an overall decreasing trend
between 1995 and 2020 (figure 4), the prevalence of infection
was relatively stable, with the national median prevalence
and IQR across urban and rural settings being, respectively,
1.0% [0.8–1.2%] in 1995 and 1.0% [0.8–1.3%] in 2020. A 6%
decline in the prevalence of cases in the acute stage was pre-
dicted between 1995 and 2020, but this was compensated by
a 13% increase, during the same period, in the predicted
prevalence of cases in the chronic severe stage (figure 5).

As the relative prevalence of infection remained largely
stable but the population increased by 39% between 1995 and
2020 (electronic supplementary material, figures S28 and S29),
the overall burden of Chagas disease was predicted to have
increased significantly (table 2). We estimated that the total
number of infections across Colombia had increased by 43%
between 1995 and 2020, reaching half a million cases. Between
1995 and 2020, even larger increases, of 57 and 79%, applied to
cases with severe cardiomyopathy and deaths attributable
to Chagas disease, respectively (purple line and shading in
figure 5c). These were driven by an increase in both population
size and the gradual ageing of the population (electronic
supplementary material, figures S28 and S29).

Large spatial heterogeneity and clustering in the burden
were observed, with three departments having the largest
number of deaths attributable to Chagas disease in 1995,
namely, Bogotá Distrito Capital (DC), Cundinamarca and
Santander, which accounted for 31% of the deaths but with
only 25% of the total population.
4. Discussion
We have developed a modelling pipeline that uses local
seroprevalence data to obtain national disease burden esti-
mates at the municipality level for Chagas disease and
have used Colombia as a case study. From the unique 76
serosurveys conducted in Colombia, we estimated that the
number of people infected with T. cruzi would have reached
506 000 (95% credible interval (CrI) = 395 000–648 000) in
2020, with a 1.0% (95%CrI = 0.8%–1.3%) infection prevalence
in the general population and 2400 (95%CrI = 1900–3400)
deaths due to Chagas disease in the same year. Temporally,
the interplay between a slight decrease in exposure, measured
as lower values of FoI and lower prevalence of new acute
cases, was overcompensated by a large increase in population
size and the gradual ageing of the population over the same
period, both of which led to a substantial increase in the esti-
mated burden of Chagas disease over time. The burden of
disease dynamics reflects the protracted nature of disease pro-
gression. The substantial spatial heterogeneities in predicted
disease burden suggest that spatial targeting of interventions
could improve the cost-effectiveness of resource allocation
(although we did not conduct an economic analysis in the pre-
sent study). Our results could inform such spatial targeting, as
our approach can help to predict locations where reducing
exposure through vector control, for instance, would be most
impactful. Other interventions, such as improving diagnosis
and access to treatment, can also be considered, and this
may lead to targeting different locations.

The performances of the FoI predictive models were good,
with cross-validation performances that would suggest lim-
ited overfitting (electronic supplementary material, table S6).
However, a formal validation of the disease burden model
with external data would be far more complex, as sources to
achieve this are limited. In fact, the surveillance system for
Chagas disease currently in place cannot be used to validate
our disease burden estimates, as the reporting is extremely
sparse, although, we observe that cases are detected in
almost all departments of Colombia (electronic supple-
mentary material, table S7). The four departments having
reported confirmed chronic cases in 2019 (Arauca, Santander,
Cesar and Boyacá) represent only 14% of the severe cases
obtained according to our results. These departments are
endemic areas that likely have adequate infrastructure to con-
duct diagnosis, as well as trained staff and population with
greater awareness of the disease than in other areas of the
country. In Colombia, in the general population, the preva-
lence of heart conditions has been estimated at around 11%
[43]. In 2019, a total of 41 848 deaths associatedwith cardiovas-
cular disease and conditions were reported across the country
[21]. If, as suggested by our models, 2400 of these deaths had
been caused by Chagas disease, then Chagas disease would
have accounted for 6% of the heart disease-related deaths in
2019 in Colombia, in line with the situation in Brazil, where
Chagas disease was estimated to be responsible for between
1 and 21% of in-patient cases with heart failure [44]. Our
model also estimates a total of 88 226 deaths among
people suffering from heart disease, and 23 158 among
people suffering from severe heart conditions, in 2020.
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Our disease burden estimates are broadly comparable to
those provided by WHO (with 438 000 cases of T. cruzi infec-
tion estimated in 2010 and a 1.0% prevalence) [6], as well as
by Moncayo et al. (with 436 000 cases of infection estimated in
2005) [1]. Disconcertingly, our estimated increase in disease
burden contrasts with the sharp decrease predicted by
WHO and by Moncayo and colleagues. Estimates from the
Global Burden of Disease Study (GBD) [8] showed a similar
temporal increase in burden in terms of deaths (143%
increase between 1995 and 2019, compared with our estimate
of 71% increase in deaths), but a much lower absolute
burden, with 170 (95% uncertainty interval = 74–283) deaths
predicted in Colombia, compared with the 2400 deaths pro-
vided by our median estimate for 2019. In terms of
infection prevalence and number of cases, the GBD predicted
a stable number of cases between 1995 and 2019, with 123 000
(95% UI = 106 000–144 000) cases and a decreasing infection
prevalence, from 0.34% (0.29–0.39%) to 0.26% (0.22–0.31%)
between 1995 and 2019, which are again below our estimates.
The estimates from the GBD, as well as ours, rely on demo-
graphic data, and therefore the underlying population data
used will influence the results. The demography in Colombia
has shown dramatic changes over the 1995–2019 period,
experiencing a sharp increase in population size as well as
transitioning, through changes in birth and death rates,
towards an older population (electronic supplementary
material, figure S29). The GBD, at the global scale, estimated
a 3% decrease in Chagas disease-related deaths for the same
period, with a decrease in Brazil and Argentina, but not in
the remaining endemic countries [8]. The lower estimation
reported by the GBD might be explained by the methodology
used but also by differences in the data used, as our study is
the first to our knowledge to comprehensively incorporate
published and unpublished serological data.

Our modelling approach is a first attempt at estimating
the burden of Chagas disease in Colombia over several
years at the municipality level. Serosurveys that were con-
ducted at a geographical scale larger than the municipality
level were excluded from our analyses to be able to account
for finer granularity in Chagas disease transmission hetero-
geneity and provide estimates at the most operational
implementation and evaluation unit.
(a) Limitations
Given the complexity of the modelling tasks required, major
simplifications were made which could influence our results.
For instance, while we used information from serological
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surveys conducted in indigenous populations to inform
spatio-temporal trends in exposure, we did not include indi-
genous populations in our burden estimates. From our
datasets only three serosurveys were conducted in indigen-
ous settings at the municipality level, and we felt this was
wholly insufficient to map exposure in specific indigenous
settings across the country, although they may be broadly
contained within rural estimates. We believe that our overall
estimates of burden would remain largely unaffected, as
only 0.6% of the population is estimated to live in indigenous
settings, characterized, among other features, by the con-
struction and use of traditional houses mostly in rural areas
[21]. However, improving our understanding of the spatial
distribution of the disease burden in these settings would
be critical to improve interventions, as a prevalence of infec-
tion of 48.7% (95%CI = 42.6–51.6%) had been estimated in
indigenous communities in 2012 [9].

We acknowledge the use of secondary data that are not
necessarily representative of the total population. Indeed,
the initial purpose of data collection for each serosurvey
varied in time and space, and different sampling biases
might have been introduced. Detecting and accounting for
those biases is challenging, and we have attempted to address
themain ones. First, the spatial target of the survey on endemic
areas could limit our ability to extrapolate across Colombia. To
overcome this, we used a spatial resampling strategy to assess
the predictive ability of the model on spatial units of data
that have not been included in the fitting of the model (see
electronic supplementary material, text S2.2).
Second, we highlighted the importance of including the
year when the serosurvey was conducted, as sampling
tended to be directed at high-risk populations for serosurveys
conducted before 2000. This effect of year may contribute to
underestimating the FoI in the past, making it difficult to
disentangle an actual decline in FoI from a reduction in
sampling bias over time. Therefore, our results, and in par-
ticular temporal trends in older estimates of Chagas
burden, should be treated with caution. We believe that our
most recent estimates should be relevant, but that currently
available data are insufficient to demonstrate a decline in
Chagas disease burden.

Third, some serosurveys targeted a particular age class, as
in the case of serosurveys sampling only or primarily children
(i.e. a surveillance sentinel population for Chagas disease);
such a sampling strategy might have limited our ability to
better infer past transmission patterns beyond the age classes
that were included in the surveys.

Other limitations are related to the structure and meth-
odological choices made to build the modelling pipeline.
We developed our pipeline to be flexible, robust and trans-
parent, with most variables used to predict the FoI and
estimate the disease burden being available across Latin
America. However, our model currently does not account
for the contribution of digestive morbidity and mortality,
which may be less prominent in Colombia but of greater
importance in other endemic regions such as the Southern
Cone of Latin America, where megacolon and megaoesopha-
gus can be present in 6% of the cases [1,45].



Table 2. Burden of Chagas disease cases in 1995 and 2020.

median (95% credible interval)

1995 2020

estimated number of cases:

total 355 000

(278 000–451 000)

506 000

(395 000–648 000)

chronic mild 70 000

(55 000–88 000)

102 000

(82 000–133 000)

chronic severe 14 000

(11 000–19 000)

22 000

(17 000–31 000)

estimated prevalence of T. cruzi infection (%):

total 1.0 (0.8–1.2) 1.0 (0.8–1.3)

urban 0.7 (0.6–0.9) 0.8 (0.6–1.1)

rural 1.6 (1.1–2.1) 1.6 (1.2–2.2)

children (0–5

years)

0.1 (0.1–0.2) 0.1 (0.1–0.2)

older (>60

years)

1.8 (1.4–2.3) 1.5 (1.2–2.0)

estimated annual number of deaths due to Chagas disease:

total 1400 (1100–1900) 2400 (1900–3400)

Bogotá DC 160 (64–443) 238 (93–700)

Cundinamarca 142 (101–200) 240 (164–341)

Santander 129 (87–173) 210 (142–248)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220278

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 A

ug
us

t 2
02

3 
Currently, our model only considers the ‘horizontal’ trans-
mission route (i.e. not accounting for mother-to-child—or
vertical—transmission), and is best suited to model vectorial
transmission. In contexts where vectorial transmission
has been interrupted, the model will need to integrate other
transmission routes, which include mother-to-child trans-
mission during pregnancy (congenital transmission) and
through organ transplant or blood transfusion (transplant
and transfusion transmission). While a substantial reduction
in the transmission risk related to blood transfusion and
organ transplantation has been observed, it remains the main
transmission route in non-endemic countries [46]. Crucially,
in the case of congenital transmission, even if the diagnosis is
made during pregnancy, treatment should be delayed until
after the delivery as it is contraindicated during pregnancy
[47]. Systematic screening of pregnant women has not yet
been implemented and remains an important challenge in
the fight against Chagas disease. Finally, we have not included
the oral transmission route because although this is of great
importance these events are less frequent, with a different
transmission dynamic that leads to outbreaks with a high pro-
portion of acute cases and high mortality [48–50], whereas we
have focused on the endemic epidemiological situation.

Given the current low access to treatment, the model did
not consider medical improvements that might help reduce
mortality due to cardiomyopathy. Finally, there were impor-
tant population movements in Colombia during the period of
our study that are not accounted for in our model, and thus
people who tested seropositive in a municipality could have
acquired the infection in another municipality. This likely
contributes to explaining why our model showed similar FoI
patterns in urban and rural areas, while vectorial transmission
is expected to have greater prominence in rural areas.

(b) Recommendations for future work
Collecting additional seroprevalence data would greatly assist
with the validation of the modelling pipeline presented here.
However, any sampling bias that may be introduced by the
sampling strategy chosen has to be considered, minimized or
at least well documented. Our results also strongly demonstrate
that (1) given the chronic nature of Chagas disease, any recent
reduction in incidence would have little measurable impact
on short-term burden, and (2) understanding demographic
trends is essential to estimate the burden of Chagas disease.
Therefore, a stable FoI is predicted to lead to constant preva-
lence and burden in a stable population, but if the population
is both increasing and ageing, burden is predicted to increase.
Better understanding of the temporal trends in Chagas
disease burden would therefore require more representative
serosurveys (across locations, settings and age classes).

Using our framework, sampling could be made in areas
where the model suggests higher uncertainty, leading to a
cycle of model fit and improvement. While rural areas are
currently well represented, this is not the case for urban
ones. Indeed, serosurveys conducted in areas defined as
urban are unlikely to be representative of densely populated
cities. Conducting serosurveys in large cities would help to
improve the estimates of disease burden and is crucial as
population migration towards cities increases; these large
cities already represent 27% of the population [21] (electronic
supplementary material, figure S27). Currently, the modelling
pipeline uses seroprevalence information from blood banks
for large cities, with these cities accounting for 20% of the
cases in 2020 and for 17% of the cases in 1995. Our study
also highlights the importance of sampling across all age-
groups to reconstruct the history of exposure and extrapolate
burden, which will be relevant across other chronic NTDs.

In this paper, we have used Colombia as a case study. How-
ever, the DICTUM platform is increasingly hosting data from a
larger number of endemic countries in Latin America in collab-
orationwith national Chagas disease control programmes, and
themodelling process is ready to be implemented in other con-
texts. Although such implementation will consider study
quality and sampling design by assigning, for instance, appro-
priate weights, the criteria should initially not be too stringent,
as this would limit the number of serosurveys included and it
would be preferable to cover a large proportion of the popu-
lation and capture as much exposure variation as possible
during preliminary, exploratory analyses. A process of refine-
ment, estimation of uncertainty, and identification of data
gaps will ensue with national and regional programme man-
agers and stakeholders. It is our hope to expand the work
presented here to other endemic countries, so FoI estimates
and their spatio-temporal trends can be updated, together
with burden of disease estimates, to inform optimal targeting
of interventions and help realize the WHO roadmap goals
for Chagas disease by 2030 and beyond.
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