375 research outputs found

    Transesterification of rapeseed oil with methanol in the presence of various co-solvents

    Get PDF
    Comunicação apresentada no «Third International Symposium on Energy from Biomass and Waste», Venice(Italy), Novembro 2010In this study, transesterification of rapeseed oil using various co-solvents(diethyl ether (DEE), dibutyl ether (diBE), tert-butyl methyl ether (tBME), diisopropyl ether (diIPE), tetrahydrofuran (THF), and acetone) was studied. The variables affecting the ester yield during transesterification reaction, such as catalyst content, methanol:oil molar ratio, methanol:cosolvent molar ratio, co-solvent type, catalysts type, agitation rate and reaction temperature were investigated. The process was monitored by gas chromatography, determining the concentration of the methyl esters. Biodiesel was characterized according to ISO norms. Among the studied co-solvents, the DEE and tBME take to the best results, however diIPE, diBE and acetone hardly improve the obtained results using only methanol. Within the range of studied variability, the rest of variables do not exercise a very significant influence. The best results are obtained with 0.7 % of KOH, a molar ratio methanol/oil of 9:1, a molar ratio co-solvent/methanol 1:1, an agitation rate of 700 rpm and a temperature of 30 º

    Transformasi Genetik Kedelai Dengan Gen Proteinase Inhibitor II Menggunakan Teknik Penembakan Partikel

    Full text link
    An experiment was conducted at the Molecular Biology and Genetic Engineering Laboratory of BB-Biogen, Bogor with an objective to obtain transgenic soybean plants containing the proteinase inhibitor II (pinII) gene. The experiment consisted of three steps, i.e., optimalization of the soybean transformation technique using the gus gene; transformation of soybean using the pinII gene, and molecular analysis of the transformed soybean plants. Two type of explants (young embryo and cotyledon) were bombarded with pRQ6 plasmid containing the gus gene with the following treatment: Helium gas pressure (1100 psi and 1300 psi), shoot distance (5 and 7 cm), and number of bombardment (1x and 2x). The result of gus assay indicated that the best bombardment was done on young cotyledon explants with 1100 psi Helium pressure, shoot distance 5 cm, and 1x bombardment. Transformation of the soybean explant using the pinII gene (inside the pTWa plasmid) was conducted using the best bombardment treatment from the first activity. Two plants from c.v. Wilis (WP1, WP2) and three plants from c.v. Tidar (TP1, TP2, TP3) were recovered from regeneration and selection of the transformed explants. Molecular analysis of the regenerated plants using the PCR technique showed that only WP2 contained the pinII gene. This plant was fertile and will be used for further evaluation

    Analisis Fenotipik Progeni Tiga Galur Tomat Transgenik Partenokarpi Di Fasilitas Uji Terbatas (Phenotypic Analysis on Progenies of Three Transgenic Parthenocarpy Tomato Lines in Biosafety Containment)

    Full text link
    Kebutuhan masyarakat akan buah tomat konsumsi dan untuk industri cenderung kian meningkat setiap tahunnya, sedangkan produksi tomat masih rendah. Hingga kini, produksi tomat nasional masih sangat rendah,yaitu 992.780 ton sehingga belum mencukupi kebutuhan pasar yang mencapai 1.230.000 ton. Beberapa upaya telah dilakukan pemerintah untuk meningkatkan produksi tomat, tetapi masih menemui beberapa masalah di lapangan. Perakitan varietas unggul tomat produktivitas tinggi dan tanpa biji (seedless) sangatlah diharapkan guna memenuhi kebutuhan masyarakat dan industri. Partenokarpi merupakan fenomena terjadinya pembentukan buah tanpa melalui proses penyerbukan dan atau pembuahan. Teknologi partenokarpi dapat digunakan untuk meningkatkan produksi tomat melalui peningkatan pembentukan buah (fruits setting) dan buah tanpa biji. Perakitan galur tomat partenokarpi melalui rekayasa genetik telah dilakukan di Balai Besar Penelitian dan Pengembangan Bioteknologi dan Sumber Daya Genetik Pertanian (BB Biogen). Enam puluh galur (event) tomat transgenik T0 yang membawa gen DefH9-iaaM telah dihasilkan dan tiga galur di antaranya, yaitu OvR#14-4, OvM2#10-1, dan OvM2#6-2 telah terpilih sebagai galur terbaik berdasarkan karakter partenokarpinya. Galur tomat transgenik ini selanjutnya dievaluasi lebih lanjut secara molekuler dan fenotipik di rumah kaca dan rumah kasa fasilitas uji terbatas (FUT). Hasil analisis molekuler menunjukkan bahwa semua galur tomat transgenik yang diuji masih membawa gen DefH9-iaaM. Hasil evaluasi awal terhadap tiga galur tomat transgenik secara fenotipik juga menunjukkan sifat partenokarpi, yaitu meningkatnya jumlah buah, berat buah, dan berkurangnya jumlah biji (seedless). Analisis fenotipik lebih lanjut terhadap progeni ketiga galur tersebut pada percobaan ini menunjukkan adanya ekspresi fenotipik dari gen DefH9-iaaM, di mana galur OvR#14-4 memiliki ekspresi fenotipik partenokarpi lebih baik daripada galur OvM2#10-1 dan OvM2#6-2.KeywordsTomat; Rekayasa genetik; Gen partenokarpi; Galur transgenik; Analisis fenotipi

    Pola Insersi Partenokarpi, Defh9-iaam Pada Galur Tomat Transgenik [Insertion Patern of Partenocarpy, Defh9-iaam on Transgenic Tomato Lines]

    Full text link
    The development of seedless tomato fruits will be more attractive to consumers and industry. Artificial parthenocarpy can be induced through genetic crossing, hormone application or genetic engineering. Development of parthenocarpic tomatos has been done by inserting parthenocarpy gene, DefH9-iaaM into tomato genome via Agrobacterium tumefaciens. Sixty putative transgenic tomato lines were produced, and three events (lines) have been selected as the best event, i.e. OvR1#14-4, OvM2#10-1, OvM2#6-2. These lines contained the DefH9-iaaM based on PCR test. This research aimed was to determine the insertion patern of DefH9-iaaM gene in the progeny of transgenic tomatos lines. Parent variety Oval and line Cl 6046 were used as control plants. Results indicated that tomatos line OvR1#14-4 was still contained the inserted DefH9-iaaM gene and followed the Mendelian pattern (3:1) based on molecular analyses and Chi-square test results, while the others were not identified. Line OvR1#14-4 was required to be further evaluated for phenotypic and genotypic analyses for the expression of their parthenocarpy

    Disposition of a Glucose Load into Hepatic Glycogen by Direct and Indirect Pathways in Juvenile Seabass and Seabream

    Get PDF
    In carnivorous fish, conversion of a glucose load to hepatic glycogen is widely used to assess their metabolic flexibility towards carbohydrate utilization, but the activities of direct and indirect pathways in this setting are unclear. We assessed the conversion of an intraperitoneal glucose load (2 g.kg−1) enriched with [U-13C6]glucose to hepatic glycogen in juvenile seabass and seabream. 13C-NMR analysis of glycogen was used to determine the contribution of the load to glycogen synthesis via direct and indirect pathways at 48-hr post-injection. For seabass, [U-13C6]glucose was accompanied by deuterated water and 2H-NMR analysis of glycogen 2H-enrichment, allowing endogenous substrate contributions to be assessed as well. For fasted seabass and seabream, 47 ± 5% and 64 ± 10% of glycogen was synthesized from the load, respectively. Direct and indirect pathways contributed equally (25 ± 3% direct, 21 ± 1% indirect for seabass; 35 ± 7% direct, 29 ± 4% indirect for seabream). In fasted seabass, integration of 2H- and 13C-NMR analysis indicated that endogenous glycerol and anaplerotic substrates contributed an additional 7 ± 2% and 7 ± 1%, respectively. In fed seabass, glucose load contributions were residual and endogenous contributions were negligible. Concluding, direct and indirect pathways contributed equally and substantially to fasting hepatic glycogen repletion from a glucose load in juvenile seabream and seabass

    Analisis Molekuler Gen Partenokarpi DefH9-RI-iaaM Pada Progeni Tomat Transgenik

    Full text link
    The development of seedless tomato fruits will be more attractive to both consumers and industries. Seedless tomatoes can beproduced through parthenocarpy technology. Artificial parthenocarpy can be induced by conventional crossing, hormoneapplication, or genetic engineering. The development of parthenocarpic tomatoes through genetic engineering has been carriedout by inserting DefH9-iaaM parthenocarpic geneinto tomato genome via Agrobacterium tumefaciens mediated transformation.Sixty putative transgenic tomato lines were produced and three events (OvR1#14-4, OvM2#10-1, and OvM2#6-2) were selectedas the best events. The background of the tomato lines was Oval variety, and based on PCR results, the three selected linescontained DefH9-RI-iaaM in their genome. The objective of this research was to determine the integration of DefH9-RI-iaaMgene in the progenies of three transgenic tomatoes lines using PCR technique. The research was conducted in the laboratoryand Biosafety Containment Facility of Indonesian Center for Agricultural Biotechnology and Genetic Resources Research andDevelopment (ICABIOGRAD). Parental variety, Oval (neither transgenic nor in vitro cultured), and elite line of CL 6046 were usedas control plants. The results indicated that the progenies (T1, T2, and T3) of the three tomato lines contained the insert DefH9-RIiaaMgene

    Disposition of [U-2H7]glucose into hepatic glycogen in rat and in seabass

    Get PDF
    The stimulation of hepatic glycogenesis is a ubiquitous response to a glucose challenge and quantifying its contribution to glucose uptake informs its role in restoring euglycemia. Glycogenesis can be quantified with labeled water provided that exchange of glucose-6-phosphate hydrogen 2 (G6P-H2) and body water via glucose-6-phosphate isomerase, and exchange of positions 4, 5 and 6 hydrogens (G6P-H456) via transaldolase, are known. These exchanges were quantified in 24-h fasted rats (Rattus norvegicus; n=6) and 21-day fasted seabass (Dicentrarchus labrax; n = 8) by administration of a glucose load (2000 mg·kg−1) enriched with [U-2H7]glucose and by quantifying hepatic glycogen 2H-enrichments after 2 h (rats) and 48 h (seabass). Direct pathway contributions of the glucose load to glycogenesis were also estimated. G6P-H2 and body water exchange was 61 ± 1% for rat and 47 ± 3% for seabass. Transaldolase-mediated exchange of G6P-H456 was 5 ± 1% for rat and 10 ± 1% for seabass. Conversion of the glucose load to hepatic glycogen was significant in seabass (249 ± 54 mg·kg−1) but negligible in rats (12 ± 1 mg·kg−1). Preload plasma glucose levels were similar for seabass and rats (3.3 ± 0.7 and 4.4 ± 0.1 mmol·L−1, respectively) but post-load plasma glucose was significantly higher in seabass compared to rats (14.6 ± 1.8 versus 5.8 ± 0.3 mmol·L−1, p b 0.01). In conclusion, G6P-H2 and body water exchange is incomplete for both species and has to be accounted for in estimating hepatic glycogen synthesis and direct pathway activities with labeled water tracers. Transaldolase-mediated exchange is insignificant. Hepatic direct pathway glycogenesis plays a prominent role in seabass glucose load disposal, but a negligible role in the rat.The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia (FCT) in the form of a Ph.D. Fellowship to F.O.M.: SFRH/ BD/51194/2010, and Research Grants to J.G.J.: PTDC/EBB-BIO/ 098111/2008 & PTDC/SAU-MET/111398/2009. The NMR spectrometer is part of the National NMR Network and was purchased in the framework of the National Programme for Scientific re-equipment, contract REDE/1517/RMN/2005, with funds from POCI 2010 (FEDER) and FCT
    corecore