11,051 research outputs found
Recommended from our members
Migrant workers in the East Midlands labour market 2010
This report is an update of previous intelligence (Migrant Workers in the East Midlands Labour Market 2007) on the profile and economic impact of migrant labour in the East Midlands economy
A microgravity isolation mount
The design and preliminary testing of a system for isolating microgravity sensitive payloads from spacecraft vibrational and impulsive disturbances is discussed. The Microgravity Isolation Mount (MGIM) concept consists of a platform which floats almost freely within a limited volume inside the spacecraft, but which is constrained to follow the spacecraft in the long term by means of very weak springs. The springs are realized magnetically and form part of a six degree of freedom active magnetic suspension system. The latter operates without any physical contact between the spacecraft and the platform itself. Power and data transfer is also performed by contactless means. Specifications are given for the expected level of input disturbances and the tolerable level of platform acceleration. The structural configuration of the mount is discussed and the design of the principal elements, i.e., actuators, sensors, control loops and power/data transfer devices are described. Finally, the construction of a hardware model that is being used to verify the predicted performance of the MGIM is described
Gravitational Waves from Neutron Stars with Large Toroidal B-fields
We show that NS's with large toroidal B-fields tend naturally to evolve into
potent gravitational-wave (gw) emitters. The toroidal field B_t tends to
distort the NS into a prolate shape, and this magnetic distortion can easily
dominate over the oblateness ``frozen into'' the NS crust. An elastic NS with
frozen-in B-field of this magnitude is clearly secularly unstable: the wobble
angle between the NS's angular momentum J^i and the star's magnetic axis n_B^i
grow on a dissipation timescale until J^i and n_B^i are orthogonal. This final
orientation is clearly the optimal one for gravitational-wave (gw) emission.
The basic cause of the instability is quite general, so we conjecture that the
same final state is reached for a realistic NS. Assuming this, we show that for
LMXB's with B_t of order 10^{13}G, the spindown from gw's is sufficient to
balance the accretion torque--supporting a suggestion by Bildsten. The spindown
rates of most millisecond pulsars can also be attributed to gw emission sourced
by toroidal B-fields, and both these sources could be observed by LIGO II.
While the first-year spindown of a newborn NS is most likely dominated by em
processes, reasonable values of B_t and the (external) dipolar field B_d can
lead to detectable levels of gw emission, for a newborn NS in our own galaxy.Comment: 7 pages; submitted to PRD; only minor revision
Effect of hyperon bulk viscosity on neutron-star r-modes
Neutron stars are expected to contain a significant number of hyperons in
addition to protons and neutrons in the highest density portions of their
cores. Following the work of Jones, we calculate the coefficient of bulk
viscosity due to nonleptonic weak interactions involving hyperons in
neutron-star cores, including new relativistic and superfluid effects. We
evaluate the influence of this new bulk viscosity on the gravitational
radiation driven instability in the r-modes. We find that the instability is
completely suppressed in stars with cores cooler than a few times 10^9 K, but
that stars rotating more rapidly than 10-30% of maximum are unstable for
temperatures around 10^10 K. Since neutron-star cores are expected to cool to a
few times 10^9 K within seconds (much shorter than the r-mode instability
growth time) due to direct Urca processes, we conclude that the gravitational
radiation instability will be suppressed in young neutron stars before it can
significantly change the angular momentum of the star.Comment: final PRD version, minor typos etc correcte
Expansion of the ligand knowledge base for chelating P,P-donor ligands (LKB-PP)
[Image: see text] We have expanded the ligand knowledge base for bidentate P,P- and P,N-donor ligands (LKB-PP, Organometallics2008, 27, 1372–1383) by 208 ligands and introduced an additional steric descriptor (nHe(8)). This expanded knowledge base now captures information on 334 bidentate ligands and has been processed with principal component analysis (PCA) of the descriptors to produce a detailed map of bidentate ligand space, which better captures ligand variation and has been used for the analysis of ligand properties
FAK Deletion Promotes p53-Mediated Induction of p21, DNA-Damage Responses and Radio-Resistance in Advanced Squamous Cancer Cells
Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that is elevated in a variety of human cancers. While FAK is implicated in many cellular processes that are perturbed in cancer, including proliferation, actin and adhesion dynamics, polarisation and invasion, there is only some limited information regarding the role of FAK in radiation survival. We have evaluated whether FAK is a general radio-sensitising target, as has been suggested by previous reports. We used a clean genetic system in which FAK was deleted from mouse squamous cell carcinoma (SCC) cells (FAK −/−), and reconstituted with exogenous FAK wild type (wt). Surprisingly, the absence of FAK was associated with increased radio-resistance in advanced SCC cells. FAK re-expression inhibited p53-mediated transcriptional up-regulation of p21, and a sub-set of other p53 target genes involved in DNA repair, after treatment with ionizing radiation. Moreover, p21 depletion promoted radio-sensitisation, implying that FAK-mediated inhibition of p21 induction is responsible for the relative radio-sensitivity of FAK-proficient SCC cells. Our work adds to a growing body of evidence that there is a close functional relationship between integrin/FAK signalling and the p53/p21 pathway, but demonstrates that FAK's role in survival after stress is context-dependent, at least in cancer cells. We suggest that there should be caution when considering inhibiting FAK in combination with radiation, as this may not always be clinically advantageous
The effects of whey protein fibrils on the linear and non-linear rheological properties of a gluten-free dough
The increasing awareness of the celiac disease, an autoimmune disorder caused by the consumption of products containing gluten, has led to a growing interest in the development of gluten-free bakery products. In this study, whey protein fibrils (WPFs) were incorporated to mimic the fibrous network of gluten. The rheological properties and microstructure of the developed gluten-free doughs were evaluated and compared with gluten doughs. Protein fibrils were prepared by heating a whey protein isolate (WPI) solution at 80°C in an acidic environment with low salt concentration, and then the fibril lengths were adjusted by leveling up the solution pH to 3.5 and 7. The dimensions of the fibrils were measured by atomic force microscopy (AFM). Rice and potato starches were mixed with fibrils, WPI, gluten, or without protein, to form different doughs for further investigation. Shear tests, including stress sweep, frequency sweep, and creep recovery, were performed to study the viscoelastic properties of doughs under small or large deformation. The strain-hardening properties of doughs under biaxial extension were studied by the lubricated squeezing flow method. The microstructure of the doughs was characterized by cryo-scanning electron microscopy (cryo-SEM). Compared with doughs prepared with WPI and no proteins, doughs incorporating fibrils showed comparable linear viscoelasticity to gluten dough tested with stress sweep, frequency sweep, and creep recovery in the linear viscoelastic region. More differences between the protein fibril doughs were revealed in the rheological properties in the non-linear region. Creep recovery parameters, such as compliance, elastic moduli during the creep, and recovery stages of gluten dough, were like those of WPF pH7 dough, but significantly different from those of the WPF pH3.5 dough. Strain-hardening properties were found in the WPF pH7 dough, although not in WPF pH3.5 dough. Microstructural characterization showed that both fibrils prepared with the different conditions formed a continuous protein phase for the improvement of dough cohesiveness, but the structure of the phase was different between the two fibrils. To summarize, whey protein fibril at pH 7 seemed to have the potential of being used as an ingredient with similar functions to gluten in gluten-free bakery products
The r-modes in accreting neutron stars with magneto-viscous boundary layers
We explore the dynamics of the r-modes in accreting neutron stars in two
ways. First, we explore how dissipation in the magneto-viscous boundary layer
(MVBL) at the crust-core interface governs the damping of r-mode perturbations
in the fluid interior. Two models are considered: one assuming an
ordinary-fluid interior, the other taking the core to consist of superfluid
neutrons, type II superconducting protons, and normal electrons. We show,
within our approximations, that no solution to the magnetohydrodynamic
equations exists in the superfluid model when both the neutron and proton
vortices are pinned. However, if just one species of vortex is pinned, we can
find solutions. When the neutron vortices are pinned and the proton vortices
are unpinned there is much more dissipation than in the ordinary-fluid model,
unless the pinning is weak. When the proton vortices are pinned and the neutron
vortices are unpinned the dissipation is comparable or slightly less than that
for the ordinary-fluid model, even when the pinning is strong. We also find in
the superfluid model that relatively weak radial magnetic fields ~ 10^9 G (10^8
K / T)^2 greatly affect the MVBL, though the effects of mutual friction tend to
counteract the magnetic effects. Second, we evolve our two models in time,
accounting for accretion, and explore how the magnetic field strength, the
r-mode saturation amplitude, and the accretion rate affect the cyclic evolution
of these stars. If the r-modes control the spin cycles of accreting neutron
stars we find that magnetic fields can affect the clustering of the spin
frequencies of low mass x-ray binaries (LMXBs) and the fraction of these that
are currently emitting gravitational waves.Comment: 19 pages, 8 eps figures, RevTeX; corrected minor typos and added a
referenc
In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory
Mars Science Laboratory's Sample Analysis at Mars (SAM) investigation has measured all of the stable isotopes of the heavy noble gases krypton and xenon in the martian atmosphere, in situ, from the Curiosity Rover at Gale Crater, Mars. Previous knowledge of martian atmospheric krypton and xenon isotope ratios has been based upon a combination of the Viking mission's krypton and xenon detections and measurements of noble gas isotope ratios in martian meteorites. However, the meteorite measurements reveal an impure mixture of atmospheric, mantle, and spallation contributions. The xenon and krypton isotopic measurements reported here include the complete set of stable isotopes, unmeasured by Viking. The new results generally agree with Mars meteorite measurements but also provide a unique opportunity to identify various non-atmospheric heavy noble gas components in the meteorites. Kr isotopic measurements define a solar-like atmospheric composition, but deviating from the solar wind pattern at 80Kr and 82Kr in a manner consistent with contributions originating from neutron capture in Br. The Xe measurements suggest an intriguing possibility that isotopes lighter than 132Xe have been enriched to varying degrees by spallation and neutron capture products degassed to the atmosphere from the regolith, and a model is constructed to explore this possibility. Such a spallation component, however, is not apparent in atmospheric Xe trapped in the glassy phases of martian meteorites
Who the hell was that? Stories, bodies and actions in the world
This article explores a two-way relationship between stories and the experiential actions of bodies in the world. Through an autoethnographic approach, the article presents a series of interlinked story fragments in an effort to show and evoke a feel for the ways in which stories, bodies, and actions influence and shape each other over time. It offers some reflections on the experiences the stories portray from the perspective of a social constructionist conception of narrative theory and suggest that while stories exert a powerful influence on the actions of our bodies, our bodies intrude on or ‘talk back’ to this process because bodies have an existence beyond stories
- …