457 research outputs found

    Regulation of Diabetic Cardiomyopathy by Caloric Restriction is Mediated by Intracellular Signaling Pathways Involving \u27SIRT1 and PGC-1alpha\u27

    Get PDF
    BACKGROUND: Metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus (DM2) are all linked to diabetic cardiomyopathy that lead to heart failure. Cardiomyopathy is initially characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and fibrosis, both of which are aggravated by angiotensin. Caloric restriction (CR) is cardioprotective in animal models of heart disease through its catabolic activity and activation of the expression of adaptive genes. We hypothesized that in the diabetic heart; this effect involves antioxidant defenses and is mediated by SIRT1 and the transcriptional coactivator PGC-1alpha (Peroxisome proliferator-activated receptor-gamma coactivator). METHODS: Obese Leptin resistant (db/db) mice characterized by DM2 were treated with angiotensin II (AT) for 4 weeks to enhance the development of cardiomyopathy. Mice were concomitantly either on a CR diet or fed ad libitum. Cardiomyocytes were exposed to high levels of glucose and were treated with EX-527 (SIRT1 inhibitor). Cardiac structure and function, gene and protein expression and oxidative stress parameters were analyzed. RESULTS: AT treated db/db mice developed cardiomyopathy manifested by elevated levels of serum glucose, cholesterol and cardiac hypertrophy. Leukocyte infiltration, fibrosis and an increase in an inflammatory marker (TNFalpha) and natriuretic peptides (ANP, BNP) gene expression were also observed. Oxidative stress was manifested by low SOD and PGC-1alpha levels and an increase in ROS and MDA. DM2 resulted in ERK1/2 activation. CR attenuated all these deleterious perturbations and prevented the development of cardiomyopathy. ERK1/2 phosphorylation was reduced in CR mice (p = 0.008). Concomitantly CR prevented the reduction in SIRT activity and PGC-1alpha (p \u3c 0.04). Inhibition of SIRT1 activity in cardiomyocytes led to a marked reduction in both SIRT1 and PGC-1alpha. ROS levels were significantly (p \u3c 0.03) increased by glucose and SIRT1 inhibition. CONCLUSION: In the current study we present evidence of the cardioprotective effects of CR operating through SIRT1 and PGC-1 alpha, thereby decreasing oxidative stress, fibrosis and inflammation. Our results suggest that increasing SIRT1 and PGC-1alpha levels offer new therapeutic approaches for the protection of the diabetic heart

    Discovery-driven ontology evolution

    Get PDF
    In this paper, we present a methodology for ontology evolution, by focusing on the specific case of multimedia ontology volution. In particular, we discuss the situation where the ontology needs to be enriched because it does not contain any concept that could be used to explain a new multimedia resource. The paper shows how ontology matching techniques can be used to enforce the discovery of new relevant concepts by probing external knowledge sources using both the information available in the multimedia resource and the knowledge contained in the current version of the ontology

    Anticancer prodrugs of butyric acid and formaldehyde protect against doxorubicin-induced cardiotoxicity

    Get PDF
    Formaldehyde has been previously shown to play a dominant role in promoting synergy between doxorubicin (Dox) and formaldehyde-releasing butyric acid (BA) prodrugs in killing cancer cells. In this work, we report that these prodrugs also protect neonatal rat cardiomyocytes and adult mice against toxicity elicited by Dox. In cardiomyocytes treated with Dox, the formaldehyde releasing prodrugs butyroyloxymethyl diethylphosphate (AN-7) and butyroyloxymethyl butyrate (AN-1), but not the corresponding acetaldehyde-releasing butyroyloxydiethyl phosphate (AN-88) or butyroyloxyethyl butyrate (AN-11), reduced lactate dehydrogenase leakage, prevented loss of mitochondrial membrane potential (ΔΨm) and attenuated upregulation of the proapoptotic gene Bax. In Dox-treated mice, AN-7 but not AN-88 attenuated weight-loss and mortality, and increase in serum lactate dehydrogenase. These findings show that BA prodrugs that release formaldehyde and augment Dox anticancer activity also protect against Dox cardiotoxicity. Based on these observations, clinical applications of these prodrugs for patients treated with Dox warrant further investigation

    Glucose-6-phosphate dehydrogenase deficiency with recurrent infections: case report

    Get PDF
    OBJECTIVE: To report a case of rare neutrophil functional disorder with clinical and laboratory findings similar to those of chronic granulomatous disease. METHODS: Patient with extremely reduced level of glucose-6-phosphate dehydrogenase and recurrent infections that improved after continuous use of cotrimoxazole. The patient presented leukocytes with defective respiratory burst, similar to what occurs in chronic granulomatous disease. COMMENTS: The diagnosis of glucose-6-phosphate dehydrogenase deficiency in neutrophils should be considered in any patient with hemolytic anemia whose level of G6PD is extremely low or in any patient that presents recurrent infections as differential diagnosis of chronic granulomatous disease.OBJETIVO: relatar a ocorrência de uma deficiência funcional de neutrófilos rara, com quadro clínico e laboratorial semelhante ao da doença granulomatosa crônica. MÉTODOS: relato de caso de paciente com deficiência acentuada da glicose-6-fosfato desidrogenase e infecções de repetição. Realizada pesquisa bibliográfica utilizando as bases de dados Medline e Lilacs, abrangendo o período de 1972 a 2000. RESULTADOS: paciente com nível da glicose-6-fosfato desidrogenase extremamente reduzido e quadro de infeções graves com melhora clínica após uso de cotrimoxazol contínuo. Os leucócitos do paciente apresentam defeito no metabolismo oxidativo, similar ao da doença granulomatosa crônica. CONCLUSÕES: o diagnóstico da deficiência da glicose-6-fosfato desidrogenase em neutrófilos deve ser considerado em qualquer paciente com anemia hemolítica não esferocítica congênita no qual o nível da glicose-6-fosfato desidrogenase esteja anormalmente baixo ou apresente infeções de repetição. É diagnóstico diferencial da doença granulomatosa crônica.Univ. Federal de São Paulo Depto. de Pediatria Disc. de Alergia, Imunologia ClínicaUniv. Federal do Rio de Janeiro Fac. de Medicina Depto. de Medicina PreventivaUNICAMP Faculdade de Ciências Médicas Depto. de PediatriaUniv. de São Paulo Fac. de MedicinaUNIFESP-EPM Depto. de PediatriaUSP Instituto de Ciências Biomédicas Depto. de ImunologiaUFRJ Fac. Med. Depto. de Medicina PreventivaUFRJ Fac. de Medicina Depto. de PediatriaUNIFESP, EPM, Depto. de PediatriaSciEL

    miR-132/212 knockout mice reveal roles for these miRNAs in regulating cortical synaptic transmission and plasticity

    Get PDF
    miR-132 and miR-212 are two closely related miRNAs encoded in the same intron of a small non-coding gene, which have been suggested to play roles in both immune and neuronal function. We describe here the generation and initial characterisation of a miR-132/212 double knockout mouse. These mice were viable and fertile with no overt adverse phenotype. Analysis of innate immune responses, including TLR-induced cytokine production and IFNβ induction in response to viral infection of primary fibroblasts did not reveal any phenotype in the knockouts. In contrast, the loss of miR-132 and miR-212, while not overtly affecting neuronal morphology, did affect synaptic function. In both hippocampal and neocortical slices miR-132/212 knockout reduced basal synaptic transmission, without affecting paired-pulse facilitation. Hippocampal long-term potentiation (LTP) induced by tetanic stimulation was not affected by miR-132/212 deletion, whilst theta burst LTP was enhanced. In contrast, neocortical theta burst-induced LTP was inhibited by loss of miR-132/212. Together these results indicate that miR-132 and/or miR-212 play a significant role in synaptic function, possibly by regulating the number of postsynaptic AMPA receptors under basal conditions and during activity-dependent synaptic plasticity

    Ultrastructure of the Interlamellar Membranes of the Nacre of the Bivalve Pteria hirundo, Determined by Immunolabelling

    Get PDF
    The current model for the ultrastructure of the interlamellar membranes of molluscan nacre imply that they consist of a core of aligned chitin fibers surrounded on both sides by acidic proteins. This model was based on observations taken on previously demineralized shells, where the original structure had disappeared. Despite other earlier claims, no direct observations exist in which the different components can be unequivocally discriminated. We have applied different labeling protocols on non-demineralized nacreous shells of the bivalve Pteria. With this method, we have revealed the disposition and nature of the different fibers of the interlamellar membranes that can be observed on the surface of the nacreous shell of the bivalve Pteria hirundo by high resolution scanning electron microscopy (SEM). The minor chitin component consists of very thin fibers with a high aspect ratio and which are seemingly disoriented. Each fiber has a protein coat, which probably forms a complex with the chitin. The chitin-protein-complex fibers are embedded in an additional proteinaceous matrix. This is the first time in which the sizes, positions and distribution of the chitin fibers have been observed in situ.AJOM was financed by a PhD Grant of the FPI program from the Spanish Ministerio de Ciencia e Innovación; TCB's PhD Grant belonged to the FPU Program of the same Ministry. AJOM and AGC were supported by Projects CGL2010-20748-C02-01 and CGL2013-48247-P of the mentioned Ministry, and RNM6433 of the Consejería de Economía, Innovación y Ciencia of the Junta de Andalucía. The European COST Action TD0903 contributed via two Short Term Scientific Missions to AJOM in FM's lab in Dijon

    Mechanical adaptation of brachiopod shells via hydration-induced structural changes.

    Get PDF
    The function-optimized properties of biominerals arise from the hierarchical organization of primary building blocks. Alteration of properties in response to environmental stresses generally involves time-intensive processes of resorption and reprecipitation of mineral in the underlying organic scaffold. Here, we report that the load-bearing shells of the brachiopod Discinisca tenuis are an exception to this process. These shells can dynamically modulate their mechanical properties in response to a change in environment, switching from hard and stiff when dry to malleable when hydrated within minutes. Using ptychographic X-ray tomography, electron microscopy and spectroscopy, we describe their hierarchical structure and composition as a function of hydration to understand the structural motifs that generate this adaptability. Key is a complementary set of structural modifications, starting with the swelling of an organic matrix on the micron level via nanocrystal reorganization and ending in an intercalation process on the molecular level in response to hydration
    corecore