1,089 research outputs found

    Bubbling with L2L^2-almost constant mean curvature and an Alexandrov-type theorem for crystals

    Full text link
    A compactness theorem for volume-constrained almost-critical points of elliptic integrands is proven. The result is new even for the area functional, as almost-criticality is measured in an integral rather than in a uniform sense. Two main applications of the compactness theorem are discussed. First, we obtain a description of critical points/local minimizers of elliptic energies interacting with a confinement potential. Second, we prove an Alexandrov-type theorem for crystalline isoperimetric problems

    Corruption and climate change policies: do the bad old days matter?

    Get PDF
    We study the effect of countries’ historical legacy with corruption on recent climate change policies and on global cooperation. Current policy outcomes build on policy choices made in previous years, and these choices were likely affected by the degree of corruption at the time. Our empirical findings using data for up to 131 countries suggest that accumulated historical experience with corruption is important for today’s policy outcomes, and appears to be more important than the current level of corruption

    Triaxial orbit-based modelling of the Milky Way Nuclear Star Cluster

    Get PDF
    We construct triaxial dynamical models for the Milky Way nuclear star cluster using Schwarzschild's orbit superposition technique. We fit the stellar kinematic maps presented in Feldmeier et al. (2014). The models are used to constrain the supermassive black hole mass M_BH, dynamical mass-to-light ratio M/L, and the intrinsic shape of the cluster. Our best-fitting model has M_BH = (3.0 +1.1 -1.3)x10^6 M_sun, M/L = (0.90 +0.76 -0.08) M_sun/L_{sun,4.5micron}, and a compression of the cluster along the line-of-sight. Our results are in agreement with the direct measurement of the supermassive black hole mass using the motion of stars on Keplerian orbits. The mass-to-light ratio is consistent with stellar population studies of other galaxies in the mid-infrared. It is possible that we underestimate M_BH and overestimate the cluster's triaxiality due to observational effects. The spatially semi-resolved kinematic data and extinction within the nuclear star cluster bias the observations to the near side of the cluster, and may appear as a compression of the nuclear star cluster along the line-of-sight. We derive a total dynamical mass for the Milky Way nuclear star cluster of M_MWNSC = (2.1 +-0.7)x10^7 M_sun within a sphere with radius r = 2 x r_eff = 8.4 pc. The best-fitting model is tangentially anisotropic in the central r = 0.5-2 pc of the nuclear star cluster, but close to isotropic at larger radii. Our triaxial models are able to recover complex kinematic substructures in the velocity map.Comment: 14 pages, 10 figures. Accepted for publication in MNRA

    Le départ de l'expédition anarctique belge

    Get PDF

    VLT Diffraction Limited Imaging and Spectroscopy in the NIR: Weighing the black hole in Centaurus A with NACO

    Full text link
    We present high spatial resolution near-infrared spectra and images of the nucleus of Centaurus A (NGC 5128) obtained with NAOS-CONICA at the VLT. The adaptive optics corrected data have a spatial resolution of 0.06" (FWHM) in K- and 0.11" in H-band, four times higher than previous studies. The observed gas motions suggest a kinematically hot disk which is orbiting a central object and is oriented nearly perpendicular to the nuclear jet. We model the central rotation and velocity dispersion curves of the [FeII] gas orbiting in the combined potential of the stellar mass and the (dominant) black hole. Our physically most plausible model, a dynamically hot and geometrically thin gas disk, yields a black hole mass of M_bh = (6.1 +0.6/-0.8) 10^7 M_sun. As the physical state of the gas is not well understood, we also consider two limiting cases: first a cold disk model, which completely neglects the velocity dispersion; it yields an M_bh estimate that is almost two times lower. The other extreme case is to model a spherical gas distribution in hydrostatic equilibrium through Jeans equation. Compared to the hot disk model the best-fit black hole mass increases by a factor of 1.5. This wide mass range spanned by the limiting cases shows how important the gas physics is even for high resolution data. Our overall best-fitting black hole mass is a factor of 2-4 lower than previous measurements. With our revised M_bh estimate, Cen A's offset from the M_bh-sigma relation is significantly reduced; it falls above this relation by a factor of ~2, which is close to the intrinsic scatter of this relation. (Abridged)Comment: 12 pages, 14 figures, including minor changes following the referee report; accepted for publication in The Astrophysical Journa

    ALMA Observations of the Physical and Chemical Conditions in Centaurus A

    Get PDF
    Centaurus A, with its gas-rich elliptical host galaxy, NGC 5128, is the nearest radio galaxy at a distance of 3.8 Mpc. Its proximity allows us to study the interaction between an active galactic nucleus, radio jets, and molecular gas in great detail. We present ALMA observations of low J transitions of three CO isotopologues, HCN, HCO+^{+}, HNC, CN, and CCH toward the inner projected 500 pc of NGC 5128. Our observations resolve physical sizes down to 40 pc. By observing multiple chemical probes, we determine the physical and chemical conditions of the nuclear interstellar medium of NGC 5128. This region contains molecular arms associated with the dust lanes and a circumnuclear disk (CND) interior to the molecular arms. The CND is approximately 400 pc by 200 pc and appears to be chemically distinct from the molecular arms. It is dominated by dense gas tracers while the molecular arms are dominated by 12^{12}CO and its rare isotopologues. The CND has a higher temperature, elevated CN/HCN and HCN/HNC intensity ratios, and much weaker 13^{13}CO and C18^{18}O emission than the molecular arms. This suggests an influence from the AGN on the CND molecular gas. There is also absorption against the AGN with a low velocity complex near the systemic velocity and a high velocity complex shifted by about 60 km s−1^{-1}. We find similar chemical properties between the CND in emission and both the low and high velocity absorption complexes implying that both likely originate from the CND. If the HV complex does originate in the CND, then that gas would correspond to gas falling toward the supermassive black hole

    Refugees, not economic migrants:Why do asylum seekers register in Hungary?

    Get PDF
    The article analyses why asylum‐seekers choose Hungary as an entry point to the European Union. Among the Central and Eastern European countries Hungary has been by far the most popular choice for asylum‐seekers between 2002 and 2016, yet surprisingly, it has been neglected by the literature. Using a panel dataset and fixed effects regressions, the article finds that beyond being ‘conveniently’ located on the Balkans migration route, variables related to Hungary's immigration policy are the most significant determinants of asylum‐seeker choices. The article finds no evidence to support recent claims by the Hungarian government that arrivals to the country are actually economic migrants and not asylum‐seekers; quite the contrary, the results indicate that on average asylum‐seekers entering Hungary are fleeing violent conflict in their countries of origin

    Phosphorylation of Targeting Protein for Xenopus Kinesin-like Protein 2 (TPX2) at Threonine 72 in Spindle Assembly

    Get PDF
    The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr(72)) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr(72), we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr(72) does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr(72) regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5.X11109Ysciescopu
    • 

    corecore