167 research outputs found
Effect of correlations on network controllability
A dynamical system is controllable if by imposing appropriate external
signals on a subset of its nodes, it can be driven from any initial state to
any desired state in finite time. Here we study the impact of various network
characteristics on the minimal number of driver nodes required to control a
network. We find that clustering and modularity have no discernible impact, but
the symmetries of the underlying matching problem can produce linear, quadratic
or no dependence on degree correlation coefficients, depending on the nature of
the underlying correlations. The results are supported by numerical simulations
and help narrow the observed gap between the predicted and the observed number
of driver nodes in real networks
Worldwide food recall patterns over an eleven month period: A country perspective.
<p>Abstract</p> <p>Background</p> <p>Following the World Health Organization Forum in November 2007, the Beijing Declaration recognized the importance of food safety along with the rights of all individuals to a safe and adequate diet. The aim of this study is to retrospectively analyze the patterns in food alert and recall by countries to identify the principal hazard generators and gatekeepers of food safety in the eleven months leading up to the Declaration.</p> <p>Methods</p> <p>The food recall data set was collected by the Laboratory of the Government Chemist (LGC, UK) over the period from January to November 2007. Statistics were computed with the focus reporting patterns by the 117 countries. The complexity of the recorded interrelations was depicted as a network constructed from structural properties contained in the data. The analysed network properties included degrees, weighted degrees, modularity and <it>k</it>-core decomposition. Network analyses of the reports, based on 'country making report' (<it>detector</it>) and 'country reported on' (<it>transgressor</it>), revealed that the network is organized around a dominant core.</p> <p>Results</p> <p>Ten countries were reported for sixty per cent of all faulty products marketed, with the top 5 countries having received between 100 to 281 reports. Further analysis of the dominant core revealed that out of the top five transgressors three made no reports (in the order China > Turkey > Iran). The top ten detectors account for three quarters of reports with three > 300 (Italy: 406, Germany: 340, United Kingdom: 322).</p> <p>Conclusion</p> <p>Of the 117 countries studied, the vast majority of food reports are made by 10 countries, with EU countries predominating. The majority of the faulty foodstuffs originate in ten countries with four major producers making no reports. This pattern is very distant from that proposed by the Beijing Declaration which urges all countries to take responsibility for the provision of safe and adequate diets for their nationals.</p
A New Approach to Analyzing Patterns of Collaboration in Co-authorship Networks - Mesoscopic Analysis and Interpretation
This paper focuses on methods to study patterns of collaboration in
co-authorship networks at the mesoscopic level. We combine qualitative methods
(participant interviews) with quantitative methods (network analysis) and
demonstrate the application and value of our approach in a case study comparing
three research fields in chemistry. A mesoscopic level of analysis means that
in addition to the basic analytic unit of the individual researcher as node in
a co-author network, we base our analysis on the observed modular structure of
co-author networks. We interpret the clustering of authors into groups as
bibliometric footprints of the basic collective units of knowledge production
in a research specialty. We find two types of coauthor-linking patterns between
author clusters that we interpret as representing two different forms of
cooperative behavior, transfer-type connections due to career migrations or
one-off services rendered, and stronger, dedicated inter-group collaboration.
Hence the generic coauthor network of a research specialty can be understood as
the overlay of two distinct types of cooperative networks between groups of
authors publishing in a research specialty. We show how our analytic approach
exposes field specific differences in the social organization of research.Comment: An earlier version of the paper was presented at ISSI 2009, 14-17
July, Rio de Janeiro, Brazil. Revised version accepted on 2 April 2010 for
publication in Scientometrics. Removed part on node-role connectivity profile
analysis after finding error in calculation and deciding to postpone
analysis
Synchronisation in networks of delay-coupled type-I excitable systems
We use a generic model for type-I excitability (known as the SNIPER or SNIC
model) to describe the local dynamics of nodes within a network in the presence
of non-zero coupling delays. Utilising the method of the Master Stability
Function, we investigate the stability of the zero-lag synchronised dynamics of
the network nodes and its dependence on the two coupling parameters, namely the
coupling strength and delay time. Unlike in the FitzHugh-Nagumo model (a model
for type-II excitability), there are parameter ranges where the stability of
synchronisation depends on the coupling strength and delay time. One important
implication of these results is that there exist complex networks for which the
adding of inhibitory links in a small-world fashion may not only lead to a loss
of stable synchronisation, but may also restabilise synchronisation or
introduce multiple transitions between synchronisation and desynchronisation.
To underline the scope of our results, we show using the Stuart-Landau model
that such multiple transitions do not only occur in excitable systems, but also
in oscillatory ones.Comment: 10 pages, 9 figure
Hierarchy measure for complex networks
Nature, technology and society are full of complexity arising from the
intricate web of the interactions among the units of the related systems (e.g.,
proteins, computers, people). Consequently, one of the most successful recent
approaches to capturing the fundamental features of the structure and dynamics
of complex systems has been the investigation of the networks associated with
the above units (nodes) together with their relations (edges). Most complex
systems have an inherently hierarchical organization and, correspondingly, the
networks behind them also exhibit hierarchical features. Indeed, several papers
have been devoted to describing this essential aspect of networks, however,
without resulting in a widely accepted, converging concept concerning the
quantitative characterization of the level of their hierarchy. Here we develop
an approach and propose a quantity (measure) which is simple enough to be
widely applicable, reveals a number of universal features of the organization
of real-world networks and, as we demonstrate, is capable of capturing the
essential features of the structure and the degree of hierarchy in a complex
network. The measure we introduce is based on a generalization of the m-reach
centrality, which we first extend to directed/partially directed graphs. Then,
we define the global reaching centrality (GRC), which is the difference between
the maximum and the average value of the generalized reach centralities over
the network. We investigate the behavior of the GRC considering both a
synthetic model with an adjustable level of hierarchy and real networks.
Results for real networks show that our hierarchy measure is related to the
controllability of the given system. We also propose a visualization procedure
for large complex networks that can be used to obtain an overall qualitative
picture about the nature of their hierarchical structure.Comment: 29 pages, 9 figures, 4 table
Doping in two elite athletics competitions assessed by randomized-response surveys
BACKGROUND:
Doping in sports compromises fair play and endangers health. To deter doping among elite athletes, the World Anti-Doping Agency (WADA) oversees testing of several hundred thousand athletic blood and urine samples annually, of which 1-2% test positive. Measures using the Athlete Biological Passport suggest a higher mean prevalence of about 14% positive tests. Biological testing, however, likely fails to detect many cutting-edge doping techniques, and thus the true prevalence of doping remains unknown.
METHODS:
We surveyed 2167 athletes at two sporting events: the 13th International Association of Athletics Federations Word Championships in Athletics (WCA) in Daegu, South Korea in August 2011 and the 12th Quadrennial Pan-Arab Games (PAG) in Doha, Qatar in December 2011. To estimate the prevalence of doping, we utilized a "randomized response technique," which guarantees anonymity for individuals when answering a sensitive question. We also administered a control question at PAG assessing past-year use of supplements.
RESULTS:
The estimated prevalence of past-year doping was 43.6% (95% confidence interval 39.4-47.9) at WCA and 57.1% (52.4-61.8) at PAG. The estimated prevalence of past-year supplement use at PAG was 70.1% (65.6-74.7%). Sensitivity analyses, assessing the robustness of these estimates under numerous hypothetical scenarios of intentional or unintentional noncompliance by respondents, suggested that we were unlikely to have overestimated the true prevalence of doping.
CONCLUSIONS:
Doping appears remarkably widespread among elite athletes, and remains largely unchecked despite current biological testing. The survey technique presented here will allow future investigators to generate continued reference estimates of the prevalence of doping
SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale
<p>Abstract</p> <p>Background</p> <p>An important problem in genomics is the automatic inference of groups of homologous proteins from pairwise sequence similarities. Several approaches have been proposed for this task which are "local" in the sense that they assign a protein to a cluster based only on the distances between that protein and the other proteins in the set. It was shown recently that global methods such as spectral clustering have better performance on a wide variety of datasets. However, currently available implementations of spectral clustering methods mostly consist of a few loosely coupled Matlab scripts that assume a fair amount of familiarity with Matlab programming and hence they are inaccessible for large parts of the research community.</p> <p>Results</p> <p>SCPS (Spectral Clustering of Protein Sequences) is an efficient and user-friendly implementation of a spectral method for inferring protein families. The method uses only pairwise sequence similarities, and is therefore practical when only sequence information is available. SCPS was tested on difficult sets of proteins whose relationships were extracted from the SCOP database, and its results were extensively compared with those obtained using other popular protein clustering algorithms such as TribeMCL, hierarchical clustering and connected component analysis. We show that SCPS is able to identify many of the family/superfamily relationships correctly and that the quality of the obtained clusters as indicated by their F-scores is consistently better than all the other methods we compared it with. We also demonstrate the scalability of SCPS by clustering the entire SCOP database (14,183 sequences) and the complete genome of the yeast <it>Saccharomyces cerevisiae </it>(6,690 sequences).</p> <p>Conclusions</p> <p>Besides the spectral method, SCPS also implements connected component analysis and hierarchical clustering, it integrates TribeMCL, it provides different cluster quality tools, it can extract human-readable protein descriptions using GI numbers from NCBI, it interfaces with external tools such as BLAST and Cytoscape, and it can produce publication-quality graphical representations of the clusters obtained, thus constituting a comprehensive and effective tool for practical research in computational biology. Source code and precompiled executables for Windows, Linux and Mac OS X are freely available at <url>http://www.paccanarolab.org/software/scps</url>.</p
Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics
Background: Network communities help the functional organization and
evolution of complex networks. However, the development of a method, which is
both fast and accurate, provides modular overlaps and partitions of a
heterogeneous network, has proven to be rather difficult. Methodology/Principal
Findings: Here we introduce the novel concept of ModuLand, an integrative
method family determining overlapping network modules as hills of an influence
function-based, centrality-type community landscape, and including several
widely used modularization methods as special cases. As various adaptations of
the method family, we developed several algorithms, which provide an efficient
analysis of weighted and directed networks, and (1) determine pervasively
overlapping modules with high resolution; (2) uncover a detailed hierarchical
network structure allowing an efficient, zoom-in analysis of large networks;
(3) allow the determination of key network nodes and (4) help to predict
network dynamics. Conclusions/Significance: The concept opens a wide range of
possibilities to develop new approaches and applications including network
routing, classification, comparison and prediction.Comment: 25 pages with 6 figures and a Glossary + Supporting Information
containing pseudo-codes of all algorithms used, 14 Figures, 5 Tables (with 18
module definitions, 129 different modularization methods, 13 module
comparision methods) and 396 references. All algorithms can be downloaded
from this web-site: http://www.linkgroup.hu/modules.ph
Two independent proteomic approaches provide a comprehensive analysis of the synovial fluid proteome response to Autologous Chondrocyte Implantation
Background: Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. Methods: Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. Results: iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI success or failure. Functional pathways that are dysregulated in ACI non-responders were identified, including acute-phase response signalling. Conclusions: Several candidate biomarkers for baseline prediction of ACI outcome were identified. A holistic overview of the SF proteome in responders and non-responders to ACI has been profiled, providing a better understanding of the biological pathways underlying clinical outcome, particularly the differential response to cartilage harvest in non-responders
- …