22 research outputs found

    SORLA regulates calpain-dependent degradation of synapsin

    Get PDF
    Introduction: Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor in neurons and a major risk factor for Alzheimer disease. Methods: Here, we performed global proteome analyses in the brain of SORLA-deficient mice followed by biochemical and histopathologic studies to identify novel neuronal pathways affected by receptor dysfunction. Results: We demonstrate that the lack of SORLA results in accumulation of phosphorylated synapsins in cortex and hippocampus. We propose an underlying molecular mechanism by demonstrating that SORLA interacts with phosphorylated synapsins through 14-3-3 adaptor proteins to deliver synapsins to calpain-mediated proteolytic degradation. Discussion: Our results suggest a novel function for SORLA which is in control of synapsin degradation, potentially impacting on synaptic vesicle endocytosis and/or exocytosis

    A Systematic Proteomic Study of Irradiated DNA Repair Deficient Nbn-Mice

    Get PDF
    BACKGROUND: The NBN gene codes for the protein nibrin, which is involved in the detection and repair of DNA double strand breaks (DSBs). The NBN gene is essential in mammals. METHODOLOGY/PRINCIPAL FINDINGS: We have used a conditional null mutant mouse model in a proteomics approach to identify proteins with modified expression levels after 4 Gy ionizing irradiation in the absence of nibrin in vivo. Altogether, amongst approximately 8,000 resolved proteins, 209 were differentially expressed in homozygous null mutant mice in comparison to control animals. One group of proteins significantly altered in null mutant mice were those involved in oxidative stress and cellular redox homeostasis (p<0.0001). In substantiation of this finding, analysis of Nbn null mutant fibroblasts indicated an increased production of reactive oxygen species following induction of DSBs. CONCLUSIONS/SIGNIFICANCE: In humans, biallelic hypomorphic mutations in NBN lead to Nijmegen breakage syndrome (NBS), an autosomal recessive genetic disease characterised by extreme radiosensitivity coupled with growth retardation, immunoinsufficiency and a very high risk of malignancy. This particularly high cancer risk in NBS may be attributable to the compound effect of a DSB repair defect and oxidative stress

    Long-term patient-important outcomes after septic shock : A protocol for 1-year follow-up of the CLASSIC trial

    Get PDF
    BackgroundIn patients with septic shock, mortality is high, and survivors experience long-term physical, mental and social impairments. The ongoing Conservative vs Liberal Approach to fluid therapy of Septic Shock in Intensive Care (CLASSIC) trial assesses the benefits and harms of a restrictive vs standard-care intravenous (IV) fluid therapy. The hypothesis is that IV fluid restriction improves patient-important long-term outcomes. AimTo assess the predefined patient-important long-term outcomes in patients randomised into the CLASSIC trial. MethodsIn this pre-planned follow-up study of the CLASSIC trial, we will assess all-cause mortality, health-related quality of life (HRQoL) and cognitive function 1 year after randomisation in the two intervention groups. The 1-year mortality will be collected from electronic patient records or central national registries in most participating countries. We will contact survivors and assess EuroQol 5-Dimension, -5-Level (EQ-5D-5L) and EuroQol-Visual Analogue Scale and Montreal Cognitive Assessment 5-minute protocol score. We will analyse mortality by logistic regression and use general linear models to assess HRQoL and cognitive function. DiscussionWith this pre-planned follow-up study of the CLASSIC trial, we will provide patient-important data on long-term survival, HRQoL and cognitive function of restrictive vs standard-care IV fluid therapy in patients with septic shock.Peer reviewe

    Conservative vs liberal fluid therapy in septic shock (CLASSIC) trial-Protocol and statistical analysis plan

    Get PDF
    Introduction Intravenous (IV) fluid is a key intervention in the management of septic shock. The benefits and harms of lower versus higher fluid volumes are unknown and thus clinical equipoise exists. We describe the protocol and detailed statistical analysis plan for the conservative versus liberal approach to fluid therapy of septic shock in the Intensive Care (CLASSIC) trial. The aim of the CLASSIC trial is to assess benefits and harms of IV fluid restriction versus standard care in adult intensive care unit (ICU) patients with septic shock. Methods CLASSIC trial is an investigator-initiated, international, randomised, stratified, and analyst-blinded trial. We will allocate 1554 adult patients with septic shock, who are planned to be or are admitted to an ICU, to IV fluid restriction versus standard care. The primary outcome is mortality at day 90. Secondary outcomes are serious adverse events (SAEs), serious adverse reactions (SARs), days alive at day 90 without life support, days alive and out of the hospital at day 90 and mortality, health-related quality of life (HRQoL), and cognitive function at 1 year. We will conduct the statistical analyses according to a pre-defined statistical analysis plan, including three interim analyses. For the primary analysis, we will use logistic regression adjusted for the stratification variables comparing the two interventions in the intention-to-treat (ITT) population. Discussion The CLASSIC trial results will provide important evidence to guide clinicians' choice regarding the IV fluid therapy in adults with septic shock.Peer reviewe

    Proteomic Shifts in Embryonic Stem Cells with Gene Dose Modifications Suggest the Presence of Balancer Proteins in Protein Regulatory Networks

    Get PDF
    Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of “balancer” proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the “elasticity” of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions

    Impairment of Adolescent Hippocampal Plasticity in a Mouse Model for Alzheimer's Disease Precedes Disease Phenotype

    Get PDF
    The amyloid precursor protein (APP) was assumed to be an important neuron-morphoregulatory protein and plays a central role in Alzheimer's disease (AD) pathology. In the study presented here, we analyzed the APP-transgenic mouse model APP23 using 2-dimensional gel electrophoresis technology in combination with DIGE and mass spectrometry. We investigated cortex and hippocampus of transgenic and wildtype mice at 1, 2, 7 and 15 months of age. Furthermore, cortices of 16 days old embryos were analyzed. When comparing the protein patterns of APP23 with wildtype mice, we detected a relatively large number of altered protein spots at all age stages and brain regions examined which largely preceded the occurrence of amyloid plaques. Interestingly, in hippocampus of adolescent, two-month old mice, a considerable peak in the number of protein changes was observed. Moreover, when protein patterns were compared longitudinally between age stages, we found that a large number of proteins were altered in wildtype mice. Those alterations were largely absent in hippocampus of APP23 mice at two months of age although not in other stages compared. Apparently, the large difference in the hippocampal protein patterns between two-month old APP23 and wildtype mice was caused by the absence of distinct developmental changes in the hippocampal proteome of APP23 mice. In summary, the absence of developmental proteome alterations as well as a down-regulation of proteins related to plasticity suggest the disturption of a normally occurring peak of hippocampal plasticity during adolescence in APP23 mice. Our findings are in line with the observation that AD is preceded by a clinically silent period of several years to decades. We also demonstrate that it is of utmost importance to analyze different brain regions and different age stages to obtain information about disease-causing mechanisms

    Furosemide versus placebo for fluid overload in intensive care patients—The randomised GODIF trial second version : Statistical analysis plan

    Get PDF
    Publisher Copyright: © 2023 The Authors. Acta Anaesthesiologica Scandinavica published by John Wiley & Sons Ltd on behalf of Acta Anaesthesiologica Scandinavica Foundation.Background: Fluid overload is associated with increased mortality in intensive care unit (ICU) patients. The GODIF trial aims to assess the benefits and harms of fluid removal with furosemide versus placebo in stable adult patients with moderate to severe fluid overload in the ICU. This article describes the detailed statistical analysis plan for the primary results of the second version of the GODIF trial. Methods: The GODIF trial is an international, multi-centre, randomised, stratified, blinded, parallel-group, pragmatic clinical trial, allocating 1000 adult ICU patients with moderate to severe fluid overload 1:1 to furosemide versus placebo. The primary outcome is days alive and out of hospital within 90 days post-randomisation. With a power of 90% and an alpha level of 5%, we may reject or detect an improvement of 8%. The primary analyses of all outcomes will be performed in the intention-to-treat population. For the primary outcome, the Kryger Jensen and Lange method will be used to compare the two treatment groups adjusted for stratification variables supplemented with sensitivity analyses in the per-protocol population and with further adjustments for prognostic variables. Secondary outcomes will be analysed with multiple linear regressions, logistic regressions or the Kryger Jensen and Lange method as suitable with adjustment for stratification variables. Conclusion: The GODIF trial data will increase the certainty about the effects of fluid removal using furosemide in adult ICU patients with fluid overload. Trial Registrations: EudraCT identifier: 2019-004292-40 and ClinicalTrials.org: NCT04180397.Peer reviewe

    Kainate promotes alterations in neuronal RNA splicing machinery

    No full text
    Kainate, a glutamate analogue, activates kainate and AMPA receptors inducing strong synaptic activation. Systemic kainate application to rodents results in seizures, neurodegeneration, and neuronal remodeling in the brain. It is therefore used to investigate molecular mechanisms responsible for these conditions. We analyzed proteome alterations in murine primary cortical neurons after 24 h of kainate treatment. Our 2-D gel based proteomics approach revealed 91 protein alterations, some already associated with kainate-induced pathology. In addition, we found a large number of proteins which have not previously been reported to be associated with kainate-induced pathology. Functional classification of altered proteins revealed that they predominantly participate in mRNA splicing and cytoskeleton remodeling

    J Proteome Res

    No full text
    Biological aging is often described by its phenotypic effect on individuals. Still, its causes are more likely found on the molecular level. Biological organisms can be considered as reliability-engineered, robust systems and applying reliability theory to their basic nonaging components, proteins, could provide insight into the aging mechanism. Reliability theory suggests that aging is an obligatory trade-off in a fault-tolerant system such as the cell which is constructed based on redundancy design. Aging is the inevitable redundancy loss of functional system components, that is proteins, over time. In our study, we investigated mouse brain development, adulthood, and aging from embryonic day 10 to 100 weeks. We determined redundancy loss of different protein categories with age using reliability theory. We observed a near-linear decrease of protein redundancy during aging. Aging may therefore be a phenotypic manifestation of redundancy loss caused by nonfunctional protein accumulation. This is supported by a loss of proteasome system components faster than dictated by reliability theory. This loss is highly detrimental to biological self-renewal and seems to be a key contributor to aging and therefore could represent a major target for therapies for aging and age-related diseases
    corecore