174 research outputs found

    IL-27 Imparts Immunoregulatory Function to Human NK Cell Subsets

    Get PDF
    Interleukin-27 (IL-27) is a cytokine with multiple roles in regulating the immune response, but its effect on human CD56bright and CD56dim NK cell subsets is unknown. NK cell subsets interact with other components of the immune system, leading to cytotoxicity or immunoregulation depending on stimulating factors. We found that IL-27 treatment results in increased IL-10 and IFN-γ expression, increased viability and decreased proliferation in both CD56bright and CD56dim NK cell subsets. More importantly, IL-27 treatment imparts regulatory activity to CD56bright NK cells, which mediates its suppressive function on T cells in a contact-dependent manner. There is growing evidence that CD56bright NK cell-mediated immunoregulation plays an important role in the control of autoimmunity. Thus, understanding the role of IL-27 in NK cell function has important implications for treatment of autoimmune disorders

    The Role of Osteopontin (OPN/SPP1) Haplotypes in the Susceptibility to Crohn's Disease

    Get PDF
    Osteopontin represents a multifunctional molecule playing a pivotal role in chronic inflammatory and autoimmune diseases. Its expression is increased in inflammatory bowel disease (IBD). The aim of our study was to analyze the association of osteopontin (OPN/SPP1) gene variants in a large cohort of IBD patients. Genomic DNA from 2819 Caucasian individuals (n = 841 patients with Crohn's disease (CD), n = 473 patients with ulcerative colitis (UC), and n = 1505 healthy unrelated controls) was analyzed for nine OPN SNPs (rs2728127, rs2853744, rs11730582, rs11739060, rs28357094, rs4754 = p.Asp80Asp, rs1126616 = p.Ala236Ala, rs1126772 and rs9138). Considering the important role of osteopontin in Th17-mediated diseases, we performed analysis for epistasis with IBD-associated IL23R variants and analyzed serum levels of the Th17 cytokine IL-22. For four OPN SNPs (rs4754, rs1126616, rs1126772 and rs9138), we observed significantly different distributions between male and female CD patients. rs4754 was protective in male CD patients (p = 0.0004, OR = 0.69). None of the other investigated OPN SNPs was associated with CD or UC susceptibility. However, several OPN haplotypes showed significant associations with CD susceptibility. The strongest association was found for a haplotype consisting of the 8 OPN SNPs rs2728127-rs2853744-rs11730582-rs11439060-rs28357094-rs112661-rs1126772-rs9138 (omnibus p-value = 2.07×10⁻⁸). Overall, the mean IL-22 secretion in the combined group of OPN minor allele carriers with CD was significantly lower than that of CD patients with OPN wildtype alleles (p = 3.66×10⁻⁵). There was evidence for weak epistasis between the OPN SNP rs28357094 with the IL23R SNP rs10489629 (p = 4.18×10⁻²) and between OPN SNP rs1126616 and IL23R SNP rs2201841 (p = 4.18×10⁻²) but none of these associations remained significant after Bonferroni correction. Our study identified OPN haplotypes as modifiers of CD susceptibility, while the combined effects of certain OPN variants may modulate IL-22 secretion

    Identification of Tsetse (Glossina spp.) using matrix-assisted laser desorption/ionisation time of flight mass spectrometry

    Get PDF
    Glossina (G.) spp. (Diptera: Glossinidae), known as tsetse flies, are vectors of African trypanosomes that cause sleeping sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS) technique, already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and female whole insects and their body parts (head, thorax, abdomen, wings and legs) was used to obtain the flies' proteins. The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain: Lei) did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid tsetse species identification in the futur

    Association of CD40 Gene Polymorphisms with Sporadic Breast Cancer in Chinese Han Women of Northeast China

    Get PDF
    BACKGROUND: Breast cancer is a polygenetic disorder with a complex inheritance pattern. Single nucleotide polymorphisms (SNPs), the most common genetic variations, influence not only phenotypic traits, but also interindividual predisposition to disease, treatment outcomes with drugs and disease prognosis. The co-stimulatory molecule CD40 plays a prominent role in immune regulation and homeostasis. Accumulating evidence suggests that CD40 contributes to the pathogenesis of cancer. Here, we set out to test the association between polymorphisms in the CD40 gene and breast carcinogenesis and tumor pathology. METHODOLOGY AND PRINCIPAL FINDINGS: Four SNPs (rs1800686, rs1883832, rs4810485 and rs3765459) were genotyped by the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method in a case-control study including 591 breast cancer patients and 600 age-matched healthy controls. Differences in the genotypic distribution between breast cancer patients and healthy controls were analyzed by the Chi-square test for trends. Our preliminary data showed a statistically significant association between the four CD40 gene SNPs and sporadic breast cancer risk (additive P = 0.0223, 0.0012, 0.0013 and 0.0279, respectively). A strong association was also found using the dominant, recessive and homozygote comparison genetic models. In the clinical features analysis, significant associations were observed between CD40 SNPs and lymph node metastasis, human epidermal growth factor receptor 2 (C-erbB2), estrogen receptor (ER), progesterone receptor (PR) and tumor protein 53 (P53) statuses. In addition, our haplotype analysis indicated that the haplotype C(rs1883832)G(rs4810485), which was located within the only linkage disequilibrium (LD) block identified, was a protective haplotype for breast cancer, whereas T(rs1883832)T(rs4810485) increased the risk in the studied population, even after correcting the P value for multiple testing (P = 0.0337 and 0.0430, respectively). CONCLUSIONS AND SIGNIFICANCE: Our findings primarily show that CD40 gene polymorphisms contribute to sporadic breast cancer risk and have a significant association with clinicopathological features among Chinese Han women from the Heilongjiang Province

    Src Kinases Are Required for a Balanced Production of IL-12/IL-23 in Human Dendritic Cells Activated by Toll-Like Receptor Agonists

    Get PDF
    BACKGROUND: Pathogen recognition by dendritic cells (DC) is crucial for the initiation of both innate and adaptive immune responses. Activation of Toll-like Receptors (TLRs) by microbial molecular patterns leads to the maturation of DC, which present the antigen and activate T cells in secondary lymphoid tissues. Cytokine production by DC is critical for shaping the adaptive immune response by regulating T helper cell differentiation. It was previously shown by our group that Src kinases play a key role in cytokines production during TLR4 activation in human DC. PRINCIPAL FINDINGS: In this work we investigated the role of Src kinases during different TLRs triggering in human monocyte-derived DC (MoDC). We found that Src family kinases are important for a balanced production of inflammatory cytokines by human MoDC upon stimulation of TLR3 and 8 with their respective agonists. Disruption of this equilibrium through pharmacological inhibition of Src kinases alters the DC maturation pattern. In particular, while expression of IL-12 and other inflammatory cytokines depend on Src kinases, the induction of IL-23 and co-stimulatory molecules do not. Accordingly, DC treated with Src inhibitors are not compromised in their ability to induce CD4 T cell proliferation and to promote the Th17 subset survival but are less efficient in inducing Th1 differentiation. CONCLUSIONS: We suggest that the pharmacological modulation of DC maturation has the potential to shape the quality of the adaptive immune response and could be exploited for the treatment of inflammation-related diseases

    Targeted calcium influx boosts cytotoxic T lymphocyte function in the tumour microenvironment

    Get PDF
    Adoptive cell transfer utilizing tumour-targeting cytotoxic T lymphocytes (CTLs) is one of the most effective immunotherapies against haematological malignancies, but significant clinical success has not yet been achieved in solid tumours due in part to the strong immunosuppressive tumour microenvironment. Here, we show that suppression of CTL killing by CD4+CD25+Foxp+ regulatory T cell (Treg) is in part mediated by TGFβ-induced inhibition of inositol trisphosphate (IP3) production, leading to a decrease in T cell receptor (TCR)-dependent intracellular Ca2+ response. Highly selective optical control of Ca2+ signalling in adoptively transferred CTLs enhances T cell activation and IFN-γ production in vitro, leading to a significant reduction in tumour growth in mice. Altogether, our findings indicate that the targeted optogenetic stimulation of intracellular Ca2+ signal allows for the remote control of cytotoxic effector functions of adoptively transferred T cells with outstanding spatial resolution by boosting T cell immune responses at the tumour sites

    Activated Human CD4+CD45RO+ Memory T-Cells Indirectly Inhibit NLRP3 Inflammasome Activation through Downregulation of P2X7R Signalling

    Get PDF
    Inflammasomes are multi-protein complexes that control the production of pro-inflammatory cytokines such as IL-1β. Inflammasomes play an important role in the control of immunity to tumors and infections, and also in autoimmune diseases, but the mechanisms controlling the activation of human inflammasomes are largely unknown. We found that human activated CD4+CD45RO+ memory T-cells specifically suppress P2X7R-mediated NLRP3 inflammasome activation, without affecting P2X7R-independent NLRP3 or NLRP1 inflammasome activation. The concomitant increase in pro-IL-1β production induced by activated memory T-cells concealed this effect. Priming with IFNβ decreased pro-IL-1β production in addition to NLRP3 inflammasome inhibition and thus unmasked the inhibitory effect on NLRP3 inflammasome activation. IFNβ suppresses NLRP3 inflammasome activation through an indirect mechanism involving decreased P2X7R signaling. The inhibition of pro-IL-1β production and suppression of NLRP3 inflammasome activation by IFNβ-primed human CD4+CD45RO+ memory T-cells is partly mediated by soluble FasL and is associated with down-regulated P2X7R mRNA expression and reduced response to ATP in monocytes. CD4+CD45RO+ memory T-cells from multiple sclerosis (MS) patients showed a reduced ability to suppress NLRP3 inflammasome activation, however their suppressive ability was recovered following in vivo treatment with IFNβ. Thus, our data demonstrate that human P2X7R-mediated NLRP3 inflammasome activation is regulated by activated CD4+CD45RO+ memory T cells, and provide new information on the mechanisms mediating the therapeutic effects of IFNβ in MS

    CD40: Novel Association with Crohn's Disease and Replication in Multiple Sclerosis Susceptibility

    Get PDF
    Background: A functional polymorphism located at 21 from the start codon of the CD40 gene, rs1883832, was previously reported to disrupt a Kozak sequence essential for translation. It has been consistently associated with Graves’ disease risk in populations of different ethnicity and genetic proxies of this variant evaluated in genome-wide association studies have shown evidence of an effect in rheumatoid arthritis and multiple sclerosis (MS) susceptibility. However, the protective allele associated with Graves’ disease or rheumatoid arthritis has shown a risk role in MS, an effect that we aimed to replicate in the present work. We hypothesized that this functional polymorphism might also show an association with other complex autoimmune condition such as inflammatory bowel disease, given the CD40 overexpression previously observed in Crohn’s disease (CD) lesions. Methodology: Genotyping of rs1883832C.T was performed in 1564 MS, 1102 CD and 969 ulcerative colitis (UC) Spanish patients and in 2948 ethnically matched controls by TaqMan chemistry. Principal Findings: The observed effect of the minor allele rs1883832T was replicated in our independent Spanish MS cohort [p= 0.025; OR (95% CI)= 1.12 (1.01–1.23)]. The frequency of the minor allele was also significantly higher in CD patients than in controls [p= 0.002; OR (95% CI)= 1.19 (1.06–1.33)]. This increased predisposition was not detected in UC patients [p= 0.5; OR (95% CI)= 1.04 (0.93–1.17)]. Conclusion: The impact of CD40 rs1883832 on MS and CD risk points to a common signaling shared by these autoimmune conditions.Peer reviewe
    corecore