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Abstract

Glossina (G.) spp. (Diptera: Glossinidae), known as tsetse flies, are vectors of African trypanosomes that cause sleeping
sickness in humans and nagana in domestic livestock. Knowledge on tsetse distribution and accurate species identification
help identify potential vector intervention sites. Morphological species identification of tsetse is challenging and sometimes
not accurate. The matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI TOF MS) technique,
already standardised for microbial identification, could become a standard method for tsetse fly diagnostics. Therefore, a
unique spectra reference database was created for five lab-reared species of riverine-, savannah- and forest- type tsetse flies
and incorporated with the commercial Biotyper 3.0 database. The standard formic acid/acetonitrile extraction of male and
female whole insects and their body parts (head, thorax, abdomen, wings and legs) was used to obtain the flies’ proteins.
The computed composite correlation index and cluster analysis revealed the suitability of any tsetse body part for a rapid
taxonomical identification. Phyloproteomic analysis revealed that the peak patterns of G. brevipalpis differed greatly from
the other tsetse. This outcome was comparable to previous theories that they might be considered as a sister group to
other tsetse spp. Freshly extracted samples were found to be matched at the species level. However, sex differentiation
proved to be less reliable. Similarly processed samples of the common house fly Musca domestica (Diptera: Muscidae; strain:
Lei) did not yield any match with the tsetse reference database. The inclusion of additional strains of morphologically
defined wild caught flies of known origin and the availability of large-scale mass spectrometry data could facilitate rapid
tsetse species identification in the future.
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Introduction

The trypanosomiasis infection risk of a particular area is

determined by several factors, including tsetse species abundance

and the sex distribution of a fly population [1]. While the sex is

easily distinguishable with the bare eye, species identification can

be challenging because there are 32 recognised tsetse species and

subspecies [2]. Differentiation relies on morphological differences

in colour, size and on minimal male genitalia variations [3].

Recent genome-based analyses revealed the subspecies status of

seemingly uniform riverine G. palpalis palpalis individuals in

Equatorial Guinea [4]. Accordingly, current tsetse specification

based on morphology may not be the only way to rapidly

determine the species status of Glossina spp.

The matrix assisted laser desorption/ionisation time of flight

mass spectrometry (MALDI-TOF MS) is an established method of

identification for microorganisms [5,6,7,8,9,10,11]. The MALDI-

based identification of microorganisms requires only a small

portion of a microbial colony and a drop of matrix solution

[12,13,14]. The intact microbial cells are mixed with matrix

solution (UV observing substances like alpha-Cyano-4-hydroxy-

cinnamic acid, 2,5-dihydroxybenzoic acid), dried and subjected to

laser induced soft ionization. The ions are then accelerated into a

vacuum tube using a high electric field and the Time of Flight

(ToF) to reach the detector is recorded. The velocity of an ion is

inversely proportional to its mass, thus smaller ions travel faster

than heavier ones and ions with the same charge travel together.

The ions hitting the detector and their time of flight are visualized

as spectra. The protein composition of each organism is unique, so

a species-specific MALDI signature or spectrum is expected. The

species identification does not require protein sequence data;

instead the acquired spectra are matched with reference spectra

database using a pattern- matching algorithm [9,11]. The

technique proved to be time and cost effective, as reliable as

genome-based identification methods [6,9]. Recently, MALDI-

based species identification has been demonstrated for higher
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organisms as micro-algae, Prototheca [15,16], the plant parasitic

nematode Anguina tritici [17], Drosophila [18,19], ticks [20] biting

midges (Culicoides spp.) [21,22,23] and fish [24]. In addition

MALDI has also been utilised for differentiation of various

eukaryotic cell lines [25], immune cells [26,27] and for species

level classification of ancient mammalian samples [28].

Several commercial software packages designed for microbial

species identification are available and include, MALDI Biotyper

(Bruker Daltonics), the Axima (Shimadzu)-SARAMIS (Anagnos-

Tec) systems (now called VITEK MS) (BioMérieux), Andromas

(Andromas SAS) systems and MicrobeLynx (Waters) [7,8,29]. As

far as our knowledge is concerned, reference spectra data for

insects or tsetse in particular have not been included in any of

these software packages. We chose the MALDI Biotyper system

for creating a tsetse-specific spectra database. This system

calculates the log score value, or similarity score, by considering

the matching proportion of the test spectra with the database

reference spectra. It also considers the consistency of peak

intensities among sample and reference spectra.

The objective of this study was to investigate whether simple

formic acid/acetonitrile extracts of five well known laboratory-

reared tsetse breeds exhibit specific and reproducible peak patterns

and if they prove to be valid for species level identification.

Usually, field-collected tsetse are stored in ethanol and often parts

of the insects are removed for diagnostics. Therefore, another goal

was to investigate if any of the body parts (head, thorax, abdomen,

legs, wings and whole insects) are useful for species prediction.

Materials and Methods

Tsetse selection and storage
To establish a tsetse database, we utilised five well-established

laboratory breeds listed in table 1. They represent tsetse from three

different habitats that are relevant for the transmission of

trypanosomes that affect humans or animals [2]. Tsetse puparia

were maintained at 26uC with a relative humidity of 75%. Two to

4 days after hatching they were sacrificed as tenerals at 218uC
and then stored in ethanol (70%).

Fly dissection, protein extraction and MALDI
measurement

A total of three insects each were obtained for the analysis of

male and female entire individuals (table 1). Additionally, three

males and females of each species were dissected representing the

peak patterns of the body parts abdomen, head, legs, thorax and

wings. The protein extraction was carried out as described in

Murugaiyan et al. [16]. In brief, triplicates of each specimen

(whole insect, head, thorax, abdomen, wings and legs) were

washed with ethanol, air dried and mixed with equal volumes of

70% formic acid and 100% acetonitrile. The samples were then

sonicated for 1 min on ice and the supernatants were collected for

further analysis. One ml of each sample extract was spotted on to

the MALDI target plate (MSP 96 target polished steel (MicroScout

Target) plate Bruker Daltonics, Bremen, Germany), dried and

overlaid with 1.0 ml of saturated a-cyano-4-hydroxycinnamic acid

Table 1. Laboratory-reared Glossina (G.) spp. selected for the
compilation of spectra database.

Species Group
Tsetse
Colony Origin

G. morsitans morsitans Morsitans TTRI1 Kariba, Zimbabwe [37]

G. austeni Morsitans TTRI1 Zanzibar, Tanzania [38]

G. pallidipes Morsitans IAEA2 Tororo, Uganda [39]

G. palpalis gambiensis Palpalis IAEA2 Burkina Faso [40]

G. brevipalpis (red eye) Fusca IAEA2 Shimba Hills, Kenya [41]

1Tsetse & Trypanosomiasis Research Institute, Tanga, Tanzania;
2International Atomic Energy Agency, Seibersdorf, Austria.
doi:10.1371/journal.pntd.0002305.t001

Box 1. Key Steps in Maldi Microbial
Identification and the Software Used in This
Study

With the aim of creating a simple protein extraction and
identification procedure for tsetse, we utilized the well-
established microbial method of MALDI identification:

1. Protein extraction

2. Spot on target plate, overlaid with matrix solution and
dried

3. Spectra acquisition

4. Peak picking and pattern matching with the database

The protein extraction is an essential step for creating
reference spectra of multicellular organisms while direct
transfer of microbial colonies from the culture plate is
sufficient for microbial identification. In this study com-
mercial software associated with MALDI MicroFlex LT
(Bruker Daltonics, Bremen, Germany) are utilized to create
a tsetse specific database that draws from individual mass
spectrum peaks. Spectra acquisition is carried out by the
software Flexcontrol 3.0 and selection is performed
manually after visualisation using FlexAnalysis 3.0. soft-
ware. Final tsetse reference spectra were created with the
software Biotyper 3.0 that includes the manufacturer’s
reference database.

Author Summary

Tsetse flies are confined to tropical Africa and are carriers
for trypanosomes, single-celled blood parasites. Through
the bite of an infective tsetse, people and animals may
contract trypanosomiasis, a degenerative disease leading
to death if left untreated. Tsetse control proved effective
for disease containment, but data on the flies as tsetse
identification are a prerequisite for planning any control
intervention. There are 32 generally accepted tsetse
species and subspecies. Classical species identification
relies on minor morphological differences, often challeng-
ing for field workers. In the last decade, Matrix-Assisted
Laser Desorption/Ionisation (MALDI) has revolutionised
microbial species identification. After a simple protein
extraction, a laser-induced ionisation takes place. Then, the
ions are accelerated in a vacuum tube, and their Time of
Flight (ToF) to reach the detector is recorded. The protein
composition of each organism is unique, and so is their
MALDI signature. Comparison of the obtained signature
with a database of known organisms enables rapid
identification as reliable as genome-based methods. To
possibly speed up tsetse diagnostics, we established a
MALDI database for the identification of five defined
laboratory tsetse breeds. Inclusion of wild-caught tsetse
could reinforce the reference database for the identifica-
tion of tsetse at the species and subspecies level.

Tsetse Identification by MALDI TOF
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matrix solution. The MALDI measurements were carried out

using MALDI Microflex LT (Bruker Daltonics, Bremen, Ger-

many) on a broad range of 2000–20000 m/z (mass to charge

ratio), following an external calibration with the bacterial test

standard as recommended by the manufacturer. Each extract was

spotted three times and each spot on the target plate was measured

three times for acquiring 27 spectra per specimen. The spectra

were acquired using the automated option (AutoXecute acquisi-

tion mode) in Flex control 3.0 software (Bruker Daltonics, Leipzig,

Germany). (Box 1)

Sodium dodecyl sulfate polyacrylamide gel
electrophoresis (SDS-PAGE)

In order to demonstrate the protein composition in each extract,

Glossina (G.) palpalis gambiensis were chosen for an SDS-PAGE

analysis [30]. In brief, the extracts of the whole insects and it’s the

body parts were precipitated in five volumes of ice-cold 100%

acetone. The pellets were reconstituted with 10 ml of sample

loading buffer, heated at 60uC for 5 minutes and separated using

4% stacking and 12% separating gel. The protein visualisation was

carried out using Coomassie Blue staining [31].

Data analysis and creation of tsetse reference spectra
Following the visual inspection using Flex analysis 3.0

software (Bruker Daltonics, Bremen, Germany), the spectra

were then loaded in Biotyper 3.0 (Bruker Daltonics, Bremen,

Germany) software. The spectra were subjected to baseline

subtraction (multipolygonal; signal to noise ratio 3) and

smoothing (Savitzky Golay algorithm, frame size 25 Da). The

composite correlation index [32], a mathematical algorithm

used to assess the spectra variations within and between each

set of the measurements. The Composite Correlation Index

(CCI) was computed using the standard settings of mass range

3000–12000 Da, resolution 4, four intervals and autocorrela-

tion off. The reference spectra were then created using the

standard method version 1.2 settings of the software (mass

error of each single spectra: 2000, desired mass error of main

spectra: 200, peak frequency: 25% and desired peak number:

70). The cluster analysis (main spectra dendrogram) was

calculated with ‘‘correlation’’ as distance measure and linkage

at ‘‘complete’’ to evaluate the suitability of the MALDI-based

differentiation of tsetse at the species level. The created main

spectra were then compiled as a tsetse database.

Figure 1. Spectra reproducibility among the biological and technical replicates. Overlay view of 27 spectra obtained from biological and
technical replicates of Glossina austeni female whole insect. The masses (in Da) of the ions are shown on the x-axis and the m/z value stands for mass
to charge ratio. On the y-axis, the relative intensity of the ions (a.u., arbitrary units) is shown. In the insert, zoomed m/z 5000 to 5200 displays the
uniformity among the measured spectra and the stacked view m/z 9000 to 12500 provides a direct comparison of all 27 measured spectra.
doi:10.1371/journal.pntd.0002305.g001

Tsetse Identification by MALDI TOF
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Evaluation of the tsetse database
In order to check the suitability of the created tsetse main

spectra for Biotyper-based species identification, the cross-match-

ing status was created after matching them to the entire database.

In addition, fresh extractions of the whole insect and the various

insect parts were utilized in triplicates to cross-check the efficiency

of the established tsetse database. For ruling out possible cross-

matching with other fly species, the common house fly Musca

domestica (Diptera: Muscidae; strain Lei) was also included in the

evaluation. Identification was carried out using the Biotyper 3.0

software tool, following the manufacturer’s recommendation on

identification based on the calculated log score values. Values of

$2.0 to 3.0 represent probable species level matching, while scores

of $1.7 to 1.9 represent probable genus level matching. A score

value of ,1.7 stands for an unreliable identification.

Results

From each tsetse specimen a total of 27 spectra representing

biological and technical replicates in the m/z range of 2000–

20000 Da were acquired automatically and thus 1620 spectra from

whole Glossina species and their body parts A–J. Visual inspection

of the spectra revealed a comparable peak pattern of the biological

and technical replicates; however, differences in peak intensities

were observed for example as shown in figure 1.

At first look, the raw spectrum displayed consistently distinct

peak patterns when comparing the two sexes of G. palpalis

gambiensis (figure 2, samples G/H at m/z 5700, 7000 and 8000)

while the three savannah species (A–F) and G. brevipalpis (I/J) only

displayed differences in peak intensity. Occasionally observed

differences as seen in the G. pallidipes female (sample E at 8100 m/

Figure 2. Representative spectra of whole insect extraction of male and female Glossina spp. Mass spectra peak pattern of whole insect
extractions of male and female Glossina (G.) spp. The x-axis m/z value stands for mass to charge ratio and the relative intensity of the ions (a.u.,
arbitrary units) is shown on the y-axis. A) G. morsitans morsitans female, B) G. morsitans morsitans male, C) G. austeni female, D) G. austeni male, E) G.
pallidipes female F) G. pallidipes male, G) G. palpalis gambiensis female, H) G. palpalis gambiensis male, I) G. brevipalpis female, and J) G. brevipalpis
male.
doi:10.1371/journal.pntd.0002305.g002

Tsetse Identification by MALDI TOF
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z) appeared inconsistently. However, several peaks showed to be

common for Glossina spp. as for instance presented in figure 2 at

5000 m/z.

As shown in figure 3, the raw spectra of different body parts and

the entire insects presented varying peak patterns at least in terms

of peak intensities. Among the body parts, peak intensities

sometimes tended to be lower in some of the leg extracts when

compared to entire insects or other parts. To demonstrate the

protein composition of whole insects and the different body parts,

G. palpalis gambiensis extracts were chosen for protein separation on

SDS-PAGE and visualised using a modified Coomassie staining.

As shown in figure 4, the protein separation was carried out from

10 to 200 kDa. The bands out of the extracts of the dissected body

parts were clearly observed in the whole insect protein extract

lane. However, it should be noted that the peaks in the MALDI

spectra were obtained from much smaller peptides (2–20 kDa).

Figure 5 depicts the colour-coded computed composite corre-

lation index [31] displaying the uniqueness of the acquired spectra

1–60. A CCI value of 0.0 (dark green) represents incongruency

and 1.0 (red) denotes complete congruency. The CCI was

observed between 0.68 and 0.98 (individual CCI values are shown

in the supplement data table S1). Very few of the spectra sets

displayed some deviation among themselves, for e.g. the CCI for

G. austeni male head was 0.68. However, this spectra set displayed a

complete deviation with other body parts or other species. Despite

this shortcoming, the spectra sets appeared to be suitable for the

compilation of a reference spectra library.

Cross–comparison of the tsetse main spectra with the entire

Bruker reference database resulted in only one clear match with a

log score value of .2.3, the cut-off value representing the most

probable matching at the species-level. Some isolates such as G.

austeni female head (no. 2) appeared to resemble G. palpalis

gambiensis male head spectra (no. 56), however, the score value

was distinctly lower than the expected matching set. This clearly

indicated that these spectra sets could be utilized to establish a

database.

Figure 3. Representative spectra from the whole insect and different body parts of female Glossina austeni. Peak pattern of whole and
body parts extractions of Glossina austeni female. The x-axis m/z values represent the mass to charge ratio and on the y-axis the relative intensity of
the ions (a.u., arbitrary units) is shown. A) Whole insect, B) abdomen, C) head, D) legs, E) thorax and F) wings.
doi:10.1371/journal.pntd.0002305.g003

Tsetse Identification by MALDI TOF
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Following these preliminary investigations, the main spectra

library representing the 70 most reproducible peaks was

constructed. The cluster analysis of the 10 main spectra of each

species is shown in figure 6 for both sexes. Consistent clustering

was observed among the extracts of G. brevipalpis, which always

stood out as a sister group to the other species regardless of the

body part. Furthermore, G. austeni showed inconsistent clustering,

neither similar to savannah group tsetse nor to riverine G. palpalis

gambiensis as for instance seen in the dendrogram.

The created tsetse main spectra were incorporated into the

commercial Bruker system and then compared with the whole

database following the manufacturer’s recommendation. Accord-

ingly, table S2 of the supplementary data describes the matching of

tsetse main spectra where log score value 3.0 stands for a 100%

match and lower matching probabilities were displayed as

subsequent hits. The results indicate that the second hit within

the acceptable cut-off value of .2.0 for some of the body part

extracts matched with the correct body part but irrespective of the

factors sex and species. This cross matching of body parts was

predominantly observed between G. austeni and G. morsitans

morsitans and among G. pallidipes and G. palpalis gambiensis. Within

the same species, complete deviation was observed in G. austeni

female head with its own abdomen and legs, Similarly, G. palpalis

gambiensis female head did not match with its legs and thorax. G.

palpalis gambiensis male head also displayed complete deviation with

G. palpalis gambiensis female head.

As shown in table 2 (detailed identification results are listed in

supplementary table S3), the results of fresh sample identification

clearly indicate that every body part and sex was correctly

matched at the species level (log score value .2.0). Despite the

100% correct identification, within this high confident identifica-

tion the following score inconsistencies occurred: 58% (35/60)

matched with the correct body part but also with the ones of the

opposite sex, 35% (21/60) matched with the correct sex but with

different body parts, 16% (10/60) matched with a different body

part and the opposite sex and 5% (3/60) even matched with other

species. The second best matching hits indicate that about 23%

(14/60) of body parts displayed lower cut-off values (log score

,1.7). Among the second best hits, incorrect matching was

observed among 13 samples (21%): body parts of female G. palpalis

gambiensis (thorax, whole and abdomen), G. pallidipes (female

thorax) and G.austeni (male legs). The extracts from Musca domestica

resulted in no reliable identification.

Discussion

To establish a tsetse reference database five laboratory breeds

representing epidemiologically important tsetse of the savannah

type G. morsitans morsitans, G. pallidipes and G. austeni, a riverine type

G. palpalis gambiensis and forest type G. brevipalpis were chosen for

this study [2,33,34] . Earlier attempts on the identification of

arthropods by MALDI were carried out after homogenisation of

the samples and extraction in a mass spectrometry-compatible

buffer system [18,20,21]. We used a standard formic acid/

acetonitrile extraction procedure of microbial cell processing for

the protein extraction from tsetse. We introduced an additional

step of sonication in order to facilitate the breakage of the chitin

shell for a better protein yield. This simple extraction method was

chosen to accommodate the field-collected samples that are stored

in ethanol and possibly dissected.

Flex analysis software revealed that the spectra of the same

species appeared to be fairly comparable despite the varying peak

intensities. Visual inspection of the spectra revealed differences

among the body parts of the same insect. Often, the most intense

peaks of body part extracts were not easily observable in the

spectra of whole insect extracts. This could be due to the protein

ionisation influenced by varying protein compositions/abundances

of different body part extracts. Additional evaluation of the protein

composition/abundance using SDS-PAGE protein separation

revealed the difference in protein bands. However, the bands of

the body part extracts were comparable to those of the whole

insect but they varied in their intensities. This was also shown

among the different sexes of the same species. As the protein

separation was carried out in a higher range (10 to 200 kDa) but

the MALDI spectra stemmed from a much smaller range of

proteins (2 to 20 kDa), So, a direct correlation among these could

not be expected. However, the compositional protein differences

among the various body part extracts and the whole insect are

clear. This protein compositional difference might attribute to the

observed difference among the spectra from different insect body

parts. Despite this variation, the technical and biological replicates

appeared to influence the peak intensity while the peak pattern

was almost comparable.

Among the commercially available software tools for species

identification, we used Biotyper software that incorporates 4613

main reference spectra of microbial species (March 2013). The

software automatically pre-process the spectra through smoothing

and baseline subtraction. The peaks were picked and compared

with the reference database. The results were expressed as

similarity log score values between 3.0 (complete matching) to 0

(complete deviation). As a first step of the main spectra creation,

the practical relation among the spectra sets was visualised by

Figure 4. SDS PAGE separation of Glossina palpalis gambiensis
protein extracts. SDS-PAGE separation of the whole insect and
bodyparts of Glossina palpalis gambiensis extracts. 10 mg of proteins
were run on 12% SDS-PAGE and stained with Coomassie brilliant blue.
doi:10.1371/journal.pntd.0002305.g004

Tsetse Identification by MALDI TOF
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computing the composite correlation index [32]. A CCI value

approaching 1 is considered to be highly significant while zero

represents complete deviation. A clear distinction between the

spectra sets of different body parts and the whole insect extracts

was displayed in the heat-map and its corresponding value. Some

of the spectra set displayed signs of deviation, for e.g. G. austeni

male head. This might be due to the presence of broader peaks,

which did not overlap with the corresponding spectra [32]. The

heat-map and CCI values indicated that the spectra sets of

different body parts and the whole insect extracts were unique and

could be utilised for the creation of a spectra library. Therefore, we

generated 60 main spectra for five tsetse species including male

and female whole insect extracts and the corresponding body

parts. These main spectra were then incorporated in the Bruker

database.

The main spectra dendrogram was useful for the differentiation

of the five species, picturing the similarities and differences of their

mass spectra profiles. Clustering of the created tsetse main spectra

revealed that they did not follow any distinct pattern with some

significant exceptions. A possible explanation could be that higher

organisms like insects might not cluster at the species level using

MALDI measurements unless they are being standardised.

However, G. austeni never clustered clearly with riverine nor

savannah species; it seems to share mass spectra patterns with both

groups reflecting the uncertainty of their phylogenetic status [35].

Very clearly though was the uniqueness of G. brevipalpis compared

to the other species. The sister status deriving from genomic

Figure 5. Composite correlation index of tsetse spectra sets. Evaluation of uniqueness among the spectra sets of 60 tsetse spectra
measurements of male (M) and female (F) individuals and their body parts. Composite correlation index matrix was calculated with Biotyper 3.0
software in the mass range of 3000–12000 Da, resolution 4, 4 intervals and auto-correction off. Red indicates relatedness between the spectra sets
and dark green indicates incongruence.
doi:10.1371/journal.pntd.0002305.g005

Figure 6. Score-oriented main spectra dendrogram of whole
Glossina spp. extracts. The dendrogram was calculated by Biotyper
3.0 software with distance measure set at correlation and linkage set at
complete.
doi:10.1371/journal.pntd.0002305.g006

Tsetse Identification by MALDI TOF
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findings [36] could therefore be mirrored in the mass spectrum

peaks of G. brevipalpis.

As a quality check, tsetse main spectra were cross-identified with

the entire database from the manufacturer. All the tsetse main

spectra matched with a log score of 3.0, indicating a clear

distinction between the species. It also showed the uniqueness of

the tsetse mass spectra for entire tsetse as well as every dissected

body part. Among the second best matched hits, sex and species

appeared to be least important while the body parts across the

species matched, especially among G. austeni and G. morsitans

morsitans and also in G. pallidipes and G. palpalis gambiensis extracts.

The complete deviation of head extracts (G. austeni female, G.

palpalis gambiensis female and male) indicates special attention when

working on species identification of head samples by MALDI.

The fresh protein extracts using the same insects resulted in 100%

matches with the database. No hits were achieved for similarly

processed Musca domestica extracts, indicating the uniqueness of the

created reference spectra for tsetse. Among the best hits at the

species level, body parts of the same species appeared to be matched

correctly but irrespective of the sex. A deviating species in the

second hit might be due to the presence of shared metabolic proteins

among different tsetse species. The 5% that mismatched completely

and the incorrect matching among the second hits indicate that the

reference database should be created for more than one body part

and of both sexes for reliable identification of insects.

The overall results clearly indicate that the success in MALDI-

based identification relies on the specific signature from the body

parts and the whole insects. While the first hit for these lab breed

tsetse appeared to be specific for species, sex and body parts, the

second hit indicates that sex is the least reliable feature of MALDI

identification. The complete deviation of head extracts with its

own other body parts as seen among G. austeni and G. palpalis

gambiensis indicate that more than one body part is needed for

accurate species identification. We propose the addition of spectra

from field-caught tsetse (whole insects and body parts) to extend

our database for a fast and accurate identification of tsetse.

Supporting Information

Table S1 Composite Correlation Index (CCI) values of
60 spectra sets of tsetse. CCI was calculated using Biotyper

3.0 software (Bruker Daltonics, Bremen, Germany) in the mass

range of 3000–12000 Da, resolution 4, 4 intervals and auto-

correction off. CCI value nearing 1.0 indicates the relatedness

between the spectral set and 0 indicates deviation among the

spectra sets. M-male and F-female.

(XLSX)

Table S2 Cross matching values of tsetse main spectra.
The created tsetse main spectra were selected in Biotyper 3.0

(Bruker Daltonics, Bremen, Germany) software and matched with

the entire database. The log score value 3.0 indicates complete

matching and 0 represents complete deviation. The manufactur-

er’s recommended log score values, $2.0 to 3.0, $1.7 to 1.9 and

,1.7 were utilised to interpret the identification as probable

species level, genus level and no reliable identification respectively.

(XLSX)

Table S3 Identification results of freshly extracted
tsetse samples. The insect proteins from whole insects and its

body parts were extracted using formic acid/acetonitrile. 1.0 ml of

the extracted was spotted on the target plate, air dried, 1.0 ml of

saturated HCCA matrix was overlaid and dried completely. The

result interpretation was carried out in accordance to the

manufacturer’s recommended cutoff log score values for species

($2.0 to 3.0), genus ($1.7 to 1.9) and the value lesser than 1.69

indicated that the samples were not reliable matched with any of

the reference spectra.

(XLSX)
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