42 research outputs found

    Optical pumping of charged excitons in unintentionally doped InAs quantum dots

    Full text link
    As an alternative to commonly used electrical methods, we have investigated the optical pumping of charged exciton complexes addressing impurity related transitions with photons of the appropriate energy. Under these conditions, we demonstrate that the pumping fidelity can be very high while still maintaining a switching behavior between the different excitonic species. This mechanism has been investigated for single quantum dots of different size present in the same sample and compared with the direct injection of spectator electrons from nearby donors.Comment: 4 pages and 3 figures submitted to AP

    Exciton Gas Compression and Metallic Condensation in a Single Semiconductor Quantum Wire

    Get PDF
    We study the metal-insulator transition in individual self-assembled quantum wires and report optical evidences of metallic liquid condensation at low temperatures. Firstly, we observe that the temperature and power dependence of the single nanowire photoluminescence follow the evolution expected for an electron-hole liquid in one dimension. Secondly, we find novel spectral features that suggest that in this situation the expanding liquid condensate compresses the exciton gas in real space. Finally, we estimate the critical density and critical temperature of the phase transition diagram at nc∌1×105n_c\sim1\times10^5 cm−1^{-1} and Tc∌35T_c\sim35 K, respectively.Comment: 4 pages, 5 figure

    Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates

    Get PDF
    3 figuras, 3 pĂĄginas.We report on the growth by molecular beam epitaxy and the study by atomic force microscopy and photoluminescence of low density metamorphic InAs/InGaAs quantum dots. subcritical InAs coverages allow to obtain 108 cm−2 dot density and metamorphic InxGa1−xAs (x = 0.15,0.30) confining layers result in emission wavelengths at 1.3 Όm. We discuss optimal growth parameters and demonstrate single quantum dot emission up to 1350 nm at low temperatures, by distinguishing the main exciton complexes in these nanostructures. Reported results indicate that metamorphic quantum dots could be valuable candidates as single photon sources for long wavelength telecom windows.the financial support of the Generalitat Valenciana and the Spanish Ministry of Science (Project Nos. PROMETEO/2009/074 and TEC2008-06756-C03-03, respectively).Peer reviewe

    Charge control in laterally coupled double quantum dots

    Get PDF
    We investigate the electronic and optical properties of InAs double quantum dots grown on GaAs (001) and laterally aligned along the [110] crystal direction. The emission spectrum has been investigated as a function of a lateral electric field applied along the quantum dot pair mutual axis. The number of confined electrons can be controlled with the external bias leading to sharp energy shifts which we use to identify the emission from neutral and charged exciton complexes. Quantum tunnelling of these electrons is proposed to explain the reversed ordering of the trion emission lines as compared to that of excitons in our system.Comment: 4 pages, 4 figures submitted to PRB Rapid Com

    Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots

    Get PDF
    We have investigated the temperature dependent recombination dynamics in two bimodally distributed InAs self assembled quantum dots samples. A rate equations model has been implemented to investigate the thermally activated carrier escape mechanism which changes from exciton-like to uncorrelated electron and hole pairs as the quantum dot size varies. For the smaller dots, we find a hot exciton thermal escape process. We evaluated the thermal transfer process between quantum dots by the quantum dot density and carrier escape properties of both samples. © 2012 American Institute of Physics.We gratefully acknowledge the financial support of the Generalitat Valenciana, Comunidad Autnoma de Madrid and the Spanish Ministry Projects Nos. PROMETEO/2009/074, S2009ESP-1503 and TEC-2008-06756-C03-03, TEC2011-29120-C05-04/01. One of the authors D. Rivas thanks the Ministry of Science for his FPI fellowship. The AFM characterization has been carried out at CIM, University of Parma, Italy.Peer Reviewe

    All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

    Full text link
    [EN] New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 mu eV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths.G Munoz-Matutano thanks the Spanish Juan de la Cierva program (JCI-2011-10686). We acknowledge the support of the Spanish MINECO through projects TEC2014-53727-C2-1-R & TEC2014-60378-C2-1-R, the Research Excellency Award Program GVA PROMETEO 2013/012 PROMETEOII/2014/059 and the Explora Ciencia Tecnologia TEC2013-50552-EXP MULTIFUN project, and the Nanoscale Quantum Optics MPNS COST Action MP1403.Muñoz Matutano, G.; Barrera Vilar, D.; Fernandez-Pousa, CR.; Chulia-Jordan, R.; Seravalli. L.; Trevisi, G.; Frigeri, P.... (2016). All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot. Scientific Reports. 6(2721):1-9. https://doi.org/10.1038/srep27214S1962721Walmsley, I. A. Quantum optics: Science and technology in a new light. Science 348, 525–530 (2015).Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011).Lu, C.-L. & Pan, J.-W. Push-button photon entanglement. Nat. Photonics 8, 174–176 (2014).Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002).Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010).Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009).MĂŒller, M., Bounouar, S., Jöns, K. D., GlĂ€ssl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 234–238 (2014).Seguin, R. et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95, 257402 (2005).Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009).Zinoni, C. et al. Time-resolved and antibunching experiments on single quantum dots at 1300nm. Appl. Phys. Lett. 88, 131102 (2006).Liu, X. et al. Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy. Appl. Phys. Lett. 103, 061114 (2013).Benyoucef, M., Yacob, M., Reithmaier, J. P., Kettler, J. & Michler, P. Telecom-wavelength (1.5 Όm) single-photon emission from InP-based quantum dots. Appl. Phys. Lett. 103, 162101 (2013).Ward, M. et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 5, 3316 (2014).Rakher, M. T. et al. Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010).Muñoz-Matutano, G. et al. Time resolved emission at 1.3 Όm of a single InAs quantum dot by using a tunable fibre Bragg grating. Nanotechnology 25, 035204 (2014).Ediger, M. et al. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nature Phys. 3, 774–779 (2007).Gerardot, B. D. et al. Laser spectroscopy of individual quantum dots charged with a single hole. Appl. Phys. Lett. 99, 243112 (2011).Gomis-Bresco, J. et al. Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping. New J. Phys. 13, 023022 (2011).Ediger, M. et al. Fine structure of negatively and positively charged excitons in semiconductor quantum dots: electron-hole asymmetry. Phys. Rev. Lett. 98, 036808 (2007).Warming, T. et al. Hole-hole and electron-hole exchange interactions in single InAs/GaAs quantum dots. Phys. Rev. B 79, 125316 (2009).Benny, Y. et al. Excitation spectroscopy of single quantum dots at tunable positive, neutral and negative charge states. Phys. Rev. B 86, 085306 (2012).Muñoz-Matutano, G. et al. Selective optical pumping of charged excitons in unintentionally doped InAs quantum dots. Nanotechnology 19, 145711 (2008).Ha, N. et al. Size-dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charge on spectral diffusion. Phys. Rev. B 92, 075306 (2015).Moskalenko, E. S. et al. Influence of excitation energy on charged exciton formation in self-assembled InAs single quantum dots. Phys. Rev. B 64, 085302 (2001).Rivas, D. et al. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light. Nano Lett. 14, 456–463 (2014).Dekel, E. et al. Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy. Phys. Rev. B 62, 11038 (2000).Wimmer, M., Nair, S. & Shumway, J. Biexciton recombination rates in self-assembled quantum dots. Phys. Rev. B 73, 165305 (2006).Dalgarno, P. A. et al. Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy. Phys. Rev. B 77, 245311 (2008).Muñoz-Matutano, G. et al. Exciton, biexciton and trion recombination dynamics in a single quantum dot under selective optical pumping. Physica E 40, 2100–2103 (2008).Birkedal, D., Leosson, K. & Hvam, J. M. Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001).Tartakovskii, A. et al. Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons. Phys. Rev. B 70, 193303 (2004).Goldmann, E., Barthel, S., Florian, M., Schuh, K. & Jahnke, F. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: statistical distribution and height-dependence. Appl. Phys. Lett. 103, 242102 (2004).Seravalli, L., Trevisi, G. & Frigeri, P. 2D–3D growth transition in metamorphic InAs/InGaAs quantum dots. Cryst. Eng. Comm. 14, 1155–1160 (2012).Akimov, I., Kavokin, K., Hundt, A. & Henneberger, F. Electron-hole exchange interaction in a negatively charged quantum dot. Phys. Rev. B 71, 075326 (2005).Brouri, R., Beveratos, A., Poizat, J. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000).Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics. Cambridge University Press (1995).Seravalli, L., Frigeri, P., Trevisi, G. & Franchi, S. 1.59 Όm room temperature emission from metamorphic InAs∕InGaAsInAs∕InGaAs quantum dots grown on GaAs substrates. Appl. Phys. Lett. 92, 213104 (2008).Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C., Hartmann, M. J. & del Valle, E. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013).Peiris, M. et al. Two-color photon correlations of the light scattered by a quantum dot. Phys. Rev. B 91, 195125 (2015).Venghaus, L. Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences Vol 123 (2006).Seravalli, L. et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl. Phys. Lett. 98, 173112 (2011).Seravalli, L. et al. Quantum dot strain engineering of InAs∕InGaAsInAs∕InGaAs nanostructures. J. Appl. Phys. 101, 024313 (2007).Seravalli, L., Trevisi, G. & Frigeri, P. Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window. Crys. Eng. Comm. 14, 6833–6838 (2012).Seravalli, L., Frigeri, P., Nasi, L., Trevisi, G. & Bocchi, C. Metamorphic quantum dots: quite different nanostructures. J. Appl. Phys. 108, 064324 (2010)

    Electrical control of a laterally ordered InAs/InP quantum dash array

    Full text link
    We have fabricated an array of closely spaced quantum dashes starting from a planar array of self-assembled semiconductor quantum wires. The array is embedded in a metallic nanogap which we investigate by micro-photoluminescence as a function of a lateral electric field. We demonstrate that the net electric charge and emission energy of individual quantum dashes can be modified externally with performance limited by the size inhomogeneity of the self-assembling process

    Parallel Recording of Single Quantum Dot Optical Emission Using Multicore Fibers

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Single Indium Arsenide Quantum Dot emission spectra have been recorded using a four-core, crosstalk-free, multicore fiber placed at the collection arm of a confocal microscope. We developed two different measurement set-ups depending on the relative configuration of the excitation and collection spots. In the single-matched mode, the emission from the excited area is collected by a single core in the multicore fiber, whereas the three remaining cores capture the emission from neighboring, non-excited areas. This procedure allows for the recording of the Quantum Dot emission from carrier diffusion between sample positions separated by more than 6 μm. In the multiple-matched mode, the excitation spot overlaps the four cores emission area. This configuration permits the acquisition of the micro-photoluminescence spectra at different sample positions without scanning. These results show the possibilities offered by multicore fibers for the spectroscopic analysis of single semiconductor Quantum Dot optical emission.This work was supported in part by the Research Excellency Award Program GVA PROMETEO under Grant 2013/012, in part by the Explora Ciencia Tecnologia through the MULTIFUN Project under Grant TEC2013-50552-EXP, in part by the Research Excellency Award Program GVA PROMETEOII under Grant 2014/059, and in part by the Ministerio de Economia y Competitividad under Grant TEC2014-53727-C2-1-R and Grant TEC2014-60378-C2-1-R. The work of G. Munoz-Matutano was supported by the Spanish Ministerio de Economia y Competitividad through the Juan de la Cierva Program under Grant JCI-2011-10686. The work of I. Gasulla was supported by the Spanish Ministerio de Economia y Competitividad through the Ramon y Cajal Program under Grant RyC-2014-16247.Muñoz-Matutano, G.; Barrera Vilar, D.; Fernandez-Pousa, CR.; Chulia-Jordan, R.; Martinez-Pastor, J.; Gasulla Mestre, I.; Seravalli, L.... (2016). Parallel Recording of Single Quantum Dot Optical Emission Using Multicore Fibers. IEEE Photonics Technology Letters. 28(11):1257-1260. https://doi.org/10.1109/LPT.2016.2538302S12571260281

    The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots

    Full text link
    [EN] The structural and morphological features of bimodal-sized InAs/(In) GaAs quantum dots with density in the low 10(9) cm(-2) range were analyzed with transmission electron microscopy and atomic force microscopy and were related to their optical properties, investigated with photoluminescence and time-resolved photoluminescence. We show that only the family of small quantum dots (QDs) is able to emit narrow photoluminescence peaks characteristic of single-QD spectra; while the behavior of large QDs is attributed to large strain fields that may induce defects affecting their optical properties, decreasing the optical intensity and broadening the homogeneous linewidth. Then, by using a rate-equation model for the exciton recombination dynamics, we show that thermal population of dark states is inhibited in both QD families capped by high In content InGaAs layers. We discuss this behavior in terms of alloy disorder and increased density of point defects in the InGaAs pseudomorphic layer.This work was supported through the Spanish MCINN and Generalitat Valenciana Grants Nos. TEC2011-29120-C05-01 and PROMETEO/2009/074, respectively, and by the 'SANDiE' Network of Excellence of EC, Contract No. NMP4-CT-2004-500101. AFM measurements were carried out at CIM-Parma University.Trevisi, G.; SuĂĄrez, I.; Seravalli, L.; Rivas, D.; Frigeri, P.; Muñoz Matutano, G.; Grillo, V.... (2013). The effect of high-In content capping layers on low-density bimodal-sized InAs quantum dots. Journal of Applied Physics. 113(19):1943061-1943068. https://doi.org/10.1063/1.4805351S1943061194306811319Salter, C. L., Stevenson, R. M., Farrer, I., Nicoll, C. A., Ritchie, D. A., & Shields, A. J. (2010). An entangled-light-emitting diode. Nature, 465(7298), 594-597. doi:10.1038/nature09078Faraon, A., Majumdar, A., Englund, D., Kim, E., Bajcsy, M., & Vučković, J. (2011). Integrated quantum optical networks based on quantum dots and photonic crystals. New Journal of Physics, 13(5), 055025. doi:10.1088/1367-2630/13/5/055025Ba Hoang, T., Beetz, J., Midolo, L., Skacel, M., Lermer, M., Kamp, M., 
 Fiore, A. (2012). Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Applied Physics Letters, 100(6), 061122. doi:10.1063/1.3683541Joyce, P. B., Krzyzewski, T. J., Bell, G. R., Jones, T. S., Malik, S., Childs, D., & Murray, R. (2000). Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy. Physical Review B, 62(16), 10891-10895. doi:10.1103/physrevb.62.10891Huang, S., Niu, Z., Ni, H., Xiong, Y., Zhan, F., Fang, Z., & Xia, J. (2007). Fabrication of ultra-low density and long-wavelength emission InAs quantum dots. Journal of Crystal Growth, 301-302, 751-754. doi:10.1016/j.jcrysgro.2006.11.299Trevisi, G., Seravalli, L., Frigeri, P., & Franchi, S. (2009). Low density InAs/(In)GaAs quantum dots emitting at long wavelengths. Nanotechnology, 20(41), 415607. doi:10.1088/0957-4484/20/41/415607Alloing, B., Zinoni, C., Zwiller, V., Li, L. H., Monat, C., Gobet, M., 
 Kapon, E. (2005). Growth and characterization of single quantum dots emitting at 1300 nm. Applied Physics Letters, 86(10), 101908. doi:10.1063/1.1872213Seravalli, L., Trevisi, G., Frigeri, P., Franchi, S., Geddo, M., & Guizzetti, G. (2009). The role of wetting layer states on the emission efficiency of InAs/InGaAs metamorphic quantum dot nanostructures. Nanotechnology, 20(27), 275703. doi:10.1088/0957-4484/20/27/275703Torchynska, T. V. (2008). Some aspects of exciton thermal exchange in InAs quantum dots coupled with InGaAs/GaAs quantum wells. Journal of Applied Physics, 104(7), 074315. doi:10.1063/1.2965196Nee, T.-E., Wu, Y.-F., Cheng, C.-C., & Shen, H.-T. (2006). Carrier dynamics study of the temperature- and excitation-dependent photoluminescence of InAs∕GaAs quantum dots. Journal of Applied Physics, 99(1), 013506. doi:10.1063/1.2150254Muñoz-Matutano, G., SuĂĄrez, I., Canet-Ferrer, J., AlĂ©n, B., Rivas, D., Seravalli, L., 
 MartĂ­nez-Pastor, J. (2012). Size dependent carrier thermal escape and transfer in bimodally distributed self assembled InAs/GaAs quantum dots. Journal of Applied Physics, 111(12), 123522. doi:10.1063/1.4729315Adhikary, S., Aytac, Y., Meesala, S., Wolde, S., Unil Perera, A. G., & Chakrabarti, S. (2012). A multicolor, broadband (5–20 Όm), quaternary-capped InAs/GaAs quantum dot infrared photodetector. Applied Physics Letters, 101(26), 261114. doi:10.1063/1.4773373Krishna, S., Raghavan, S., von Winckel, G., Stintz, A., Ariyawansa, G., Matsik, S. G., & Perera, A. G. U. (2003). Three-color (λp1∌3.8 Όm, λp2∌8.5 Όm, and λp3∌23.2 Όm) InAs/InGaAs quantum-dots-in-a-well detector. Applied Physics Letters, 83(14), 2745-2747. doi:10.1063/1.1615838Liu, H. Y., Hopkinson, M., Harrison, C. N., Steer, M. J., Frith, R., Sellers, I. R., 
 Skolnick, M. S. (2003). Optimizing the growth of 1.3 ÎŒm InAs/InGaAs dots-in-a-well structure. Journal of Applied Physics, 93(5), 2931-2936. doi:10.1063/1.1542914Seravalli, L., Trevisi, G., Frigeri, P., Rivas, D., Muñoz-Matutano, G., SuĂĄrez, I., 
 MartĂ­nez-Pastor, J. P. (2011). Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Applied Physics Letters, 98(17), 173112. doi:10.1063/1.3584132Alloing, B., Zinoni, C., Li, L. H., Fiore, A., & Patriarche, G. (2007). Structural and optical properties of low-density and In-rich InAs∕GaAs quantum dots. Journal of Applied Physics, 101(2), 024918. doi:10.1063/1.2427104Seravalli, L., Trevisi, G., & Frigeri, P. (2012). Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window. CrystEngComm, 14(20), 6833. doi:10.1039/c2ce25860aGrillo, V., & Rossi, F. (2011). A new insight on crystalline strain and defect features by STEM–ADF imaging. Journal of Crystal Growth, 318(1), 1151-1156. doi:10.1016/j.jcrysgro.2010.10.180Grillo, V., Mueller, K., Volz, K., Glas, F., Grieb, T., & Rosenauer, A. (2011). Strain, composition and disorder in ADF imaging of semiconductors. Journal of Physics: Conference Series, 326, 012006. doi:10.1088/1742-6596/326/1/012006Lutz, M. A., Feenstra, R. M., Mooney, P. M., Tersoff, J., & Chu, J. O. (1994). Facet formation in strained Si1−x Gex films. Surface Science, 316(3), L1075-L1080. doi:10.1016/0039-6028(94)91208-4Kamins, T. I., Medeiros-Ribeiro, G., Ohlberg, D. A. A., & Stanley Williams, R. (1999). Evolution of Ge islands on Si(001) during annealing. Journal of Applied Physics, 85(2), 1159-1171. doi:10.1063/1.369255Kratzer, P., Liu, Q. K. K., Acosta-Diaz, P., Manzano, C., Costantini, G., Songmuang, R., 
 Kern, K. (2006). Shape transition during epitaxial growth ofInAsquantum dots onGaAs(001): Theory and experiment. Physical Review B, 73(20). doi:10.1103/physrevb.73.205347Grillo, V., & Rotunno, E. (2013). STEM_CELL: A software tool for electron microscopy: Part I—simulations. Ultramicroscopy, 125, 97-111. doi:10.1016/j.ultramic.2012.10.016Trevisi, G., Seravalli, L., Frigeri, P., Bocchi, C., Grillo, V., Nasi, L., 
 MartĂ­nez-Pastor, J. (2011). MBE growth and properties of low-density InAs/GaAs quantum dot structures. Crystal Research and Technology, 46(8), 801-804. doi:10.1002/crat.201000622Seravalli, L., Bocchi, C., Trevisi, G., & Frigeri, P. (2010). Properties of wetting layer states in low density InAs quantum dot nanostructures emitting at 1.3 Όm: Effects of InGaAs capping. Journal of Applied Physics, 108(11), 114313. doi:10.1063/1.3518049Torchynska, T. V., Casas Espinola, J. L., Borkovska, L. V., Ostapenko, S., Dybiec, M., Polupan, O., 
 Malloy, K. J. (2007). Thermal activation of excitons in asymmetric InAs dots-in-a-well InxGa1−xAs∕GaAs structures. Journal of Applied Physics, 101(2), 024323. doi:10.1063/1.2427105Brusaferri, L., Sanguinetti, S., Grilli, E., Guzzi, M., Bignazzi, A., Bogani, F., 
 Franchi, S. (1996). Thermally activated carrier transfer and luminescence line shape in self‐organized InAs quantum dots. Applied Physics Letters, 69(22), 3354-3356. doi:10.1063/1.117304Sanguinetti, S., Henini, M., Grassi Alessi, M., Capizzi, M., Frigeri, P., & Franchi, S. (1999). Carrier thermal escape and retrapping in self-assembled quantum dots. Physical Review B, 60(11), 8276-8283. doi:10.1103/physrevb.60.8276Dawson, P., Rubel, O., Baranovskii, S. D., Pierz, K., Thomas, P., & Göbel, E. O. (2005). Temperature-dependent optical properties ofInAs∕GaAsquantum dots: Independent carrier versus exciton relaxation. Physical Review B, 72(23). doi:10.1103/physrevb.72.235301Smirnov, M. B., Talalaev, V. G., Novikov, B. V., Sarangov, S. V., Zakharov, N. D., Werner, P., 
 Cirlin, G. E. (2010). Temperature dependent luminescence from quantum dot arrays: phonon-assisted line broadening versus carrier escape-induced narrowing. physica status solidi (b), 247(2), 347-352. doi:10.1002/pssb.200945457Kobayashi, N. P., Ramachandran, T. R., Chen, P., & Madhukar, A. (1996). In situ, atomic force microscope studies of the evolution of InAs three‐dimensional islands on GaAs(001). Applied Physics Letters, 68(23), 3299-3301. doi:10.1063/1.116580Sales, D. L., Pizarro, J., Galindo, P. L., Garcia, R., Trevisi, G., Frigeri, P., 
 Molina, S. I. (2007). Critical strain region evaluation of self-assembled semiconductor quantum dots. Nanotechnology, 18(47), 475503. doi:10.1088/0957-4484/18/47/475503Abbarchi, M., Troiani, F., Mastrandrea, C., Goldoni, G., Kuroda, T., Mano, T., 
 Gurioli, M. (2008). Spectral diffusion and line broadening in single self-assembled GaAs∕AlGaAs quantum dot photoluminescence. Applied Physics Letters, 93(16), 162101. doi:10.1063/1.3003578Alonso-GonzĂĄlez, P., AlĂ©n, B., Fuster, D., GonzĂĄlez, Y., GonzĂĄlez, L., & MartĂ­nez-Pastor, J. (2007). Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes. Applied Physics Letters, 91(16), 163104. doi:10.1063/1.2799736Seravalli, L., Frigeri, P., Nasi, L., Trevisi, G., & Bocchi, C. (2010). Metamorphic quantum dots: Quite different nanostructures. Journal of Applied Physics, 108(6), 064324. doi:10.1063/1.3483249Le Ru, E. C., Fack, J., & Murray, R. (2003). Temperature and excitation density dependence of the photoluminescence from annealed InAs/GaAs quantum dots. Physical Review B, 67(24). doi:10.1103/physrevb.67.245318Mazzucato, S., Nardin, D., Capizzi, M., Polimeni, A., Frova, A., Seravalli, L., & Franchi, S. (2005). Defect passivation in strain engineered InAs/(InGa)As quantum dots. Materials Science and Engineering: C, 25(5-8), 830-834. doi:10.1016/j.msec.2005.06.025Popescu, D. P., Eliseev, P. G., Stintz, A., & Malloy, K. J. (2003). Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well. Semiconductor Science and Technology, 19(1), 33-38. doi:10.1088/0268-1242/19/1/005Colombo, D., Sanguinetti, S., Grilli, E., Guzzi, M., Martinelli, L., Gurioli, M., 
 Franchi, S. (2003). Efficient room temperature carrier trapping in quantum dots by tailoring the wetting layer. Journal of Applied Physics, 94(10), 6513-6517. doi:10.1063/1.1622775Ouerghui, W., Martinez-Pastor, J., Gomis, J., Melliti, A., Maaref, M. A., Granados, D., & Garcia, J. M. (2006). Effect of carrier transfer on the PL intensity in self-assembled In (Ga) As/GaAs quantum rings. The European Physical Journal Applied Physics, 35(3), 159-163. doi:10.1051/epjap:2006088Kong, L., Wu, Z., Feng, Z. C., & Ferguson, I. T. (2007). Photoluminescence characteristics of InAs self-assembled quantum dots in InGaAs∕GaAs quantum well. Journal of Applied Physics, 101(12), 126101. doi:10.1063/1.2745410Kong, L., Feng, Z. C., Wu, Z., & Lu, W. (2009). Temperature dependent and time-resolved photoluminescence studies of InAs self-assembled quantum dots with InGaAs strain reducing layer structure. Journal of Applied Physics, 106(1), 013512. doi:10.1063/1.3159648Gurioli, M., Vinattieri, A., Zamfirescu, M., Colocci, M., Sanguinetti, S., & Nötzel, R. (2006). Recombination kinetics of InAs quantum dots: Role of thermalization in dark states. Physical Review B, 73(8). doi:10.1103/physrevb.73.085302Harbord, E., Spencer, P., Clarke, E., & Murray, R. (2009). Radiative lifetimes in undoped andp-doped InAs/GaAs quantum dots. Physical Review B, 80(19). doi:10.1103/physrevb.80.195312Gomis, J., MartĂ­nez-Pastor, J., AlĂ©n, B., Granados, D., GarcĂ­a, J. M., & Roussignol, P. (2006). Shape dependent electronic structure and exciton dynamics in small In(Ga)As quantum dots. The European Physical Journal B, 54(4), 471-477. doi:10.1140/epjb/e2007-00027-5Lin, C. H., Lin, H. S., Huang, C. C., Su, S. K., Lin, S. D., Sun, K. W., 
 Shen, J. L. (2009). Temperature dependence of time-resolved photoluminescence spectroscopy in InAs/GaAs quantum ring. Applied Physics Letters, 94(18), 183101. doi:10.1063/1.3130741Yang, B., Schneeloch, J. E., Pan, Z., Furis, M., & Achermann, M. (2010). Radiative lifetimes and orbital symmetry of electronic energy levels of CdS nanocrystals: Size dependence. Physical Review B, 81(7). doi:10.1103/physrevb.81.073401Murphy, S. T., Chroneos, A., Grimes, R. W., Jiang, C., & Schwingenschlögl, U. (2011). Phase stability and the arsenic vacancy defect in InxGa1−xAs. Physical Review B, 84(18). doi:10.1103/physrevb.84.18410

    Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates

    Full text link
    The multiexciton properties of extrinsic centers from AlGaAs layers on Ge and Si substrates are addressed. The two photon cascade is found both in steady state and in time resolved experiments. Polarization analysis of the photoluminescence provides clearcut attribution to neutral biexciton complexes. Our findings demonstrate the prospect of exploiting extrinsic centers for generating entangled photon pairs on a Si based device.Sarti, F.; Muñoz Matutano, G.; Bauer, D.; Dotti, N.; Bietti, S.; Isella, G.; Vinattieri, A.... (2013). Multiexciton complex from extrinsic centers in AlGaAs epilayers on Ge and Si substrates. Journal of Applied Physics. 114(22):2243141-2243143. doi:10.1063/1.4844375S2243141224314311422Kimble, H. J. (2008). The quantum internet. Nature, 453(7198), 1023-1030. doi:10.1038/nature07127Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., & Zeilinger, A. (1997). Experimental quantum teleportation. Nature, 390(6660), 575-579. doi:10.1038/37539Shields, A. J. (2007). Semiconductor quantum light sources. Nature Photonics, 1(4), 215-223. doi:10.1038/nphoton.2007.46Akopian, N., Lindner, N. H., Poem, E., Berlatzky, Y., Avron, J., Gershoni, D., 
 Petroff, P. M. (2006). Entangled Photon Pairs from Semiconductor Quantum Dots. Physical Review Letters, 96(13). doi:10.1103/physrevlett.96.130501Dousse, A., SuffczyƄski, J., Beveratos, A., Krebs, O., LemaĂźtre, A., Sagnes, I., 
 Senellart, P. (2010). Ultrabright source of entangled photon pairs. Nature, 466(7303), 217-220. doi:10.1038/nature09148Cavigli, L., Bietti, S., Accanto, N., Minari, S., Abbarchi, M., Isella, G., 
 Sanguinetti, S. (2012). High temperature single photon emitter monolithically integrated on silicon. Applied Physics Letters, 100(23), 231112. doi:10.1063/1.4726189Accanto, N., Minari, S., Cavigli, L., Bietti, S., Isella, G., Vinattieri, A., 
 Gurioli, M. (2013). Kinetics of multiexciton complex in GaAs quantum dots on Si. Applied Physics Letters, 102(5), 053109. doi:10.1063/1.4790148Kurtsiefer, C., Mayer, S., Zarda, P., & Weinfurter, H. (2000). Stable Solid-State Source of Single Photons. Physical Review Letters, 85(2), 290-293. doi:10.1103/physrevlett.85.290Brouri, R., Beveratos, A., Poizat, J.-P., & Grangier, P. (2000). Photon antibunching in the fluorescence of individual color centers in diamond. Optics Letters, 25(17), 1294. doi:10.1364/ol.25.001294Strauf, S., Michler, P., Klude, M., Hommel, D., Bacher, G., & Forchel, A. (2002). Quantum Optical Studies on Individual Acceptor Bound Excitons in a Semiconductor. Physical Review Letters, 89(17). doi:10.1103/physrevlett.89.177403Muller, A., Bianucci, P., Piermarocchi, C., Fornari, M., Robin, I. C., AndrĂ©, R., & Shih, C. K. (2006). Time-resolved photoluminescence spectroscopy of individual Te impurity centers inZnSe. Physical Review B, 73(8). doi:10.1103/physrevb.73.081306Sanaka, K., Pawlis, A., Ladd, T. D., Sleiter, D. J., Lischka, K., & Yamamoto, Y. (2012). Entangling Single Photons from Independently Tuned Semiconductor Nanoemitters. Nano Letters, 12(9), 4611-4616. doi:10.1021/nl301911tIkezawa, M., Sakuma, Y., Zhang, L., Sone, Y., Mori, T., Hamano, T., 
 Masumoto, Y. (2012). Single-photon generation from a nitrogen impurity center in GaAs. Applied Physics Letters, 100(4), 042106. doi:10.1063/1.3679181Minari, S., Cavigli, L., Sarti, F., Abbarchi, M., Accanto, N., Muñoz Matutano, G., 
 Gurioli, M. (2012). Single photon emission from impurity centers in AlGaAs epilayers on Ge and Si substrates. Applied Physics Letters, 101(17), 172105. doi:10.1063/1.4761939Marcet, S., Ouellet-Plamondon, C., Éthier-Majcher, G., Saint-Jean, P., AndrĂ©, R., Klem, J. F., & Francoeur, S. (2010). Charged excitons and biexcitons bound to isoelectronic centers. Physical Review B, 82(23). doi:10.1103/physrevb.82.235311Jo, M., Mano, T., Kuroda, T., Sakuma, Y., & Sakoda, K. (2013). Visible single-photon emission from a nitrogen impurity center in AlAs. Applied Physics Letters, 102(6), 062107. doi:10.1063/1.4792315Abbarchi, M., Mastrandrea, C., Kuroda, T., Mano, T., Vinattieri, A., Sakoda, K., & Gurioli, M. (2009). Poissonian statistics of excitonic complexes in quantum dots. Journal of Applied Physics, 106(5), 053504. doi:10.1063/1.3197848Kuroda, T., Sanguinetti, S., Gurioli, M., Watanabe, K., Minami, F., & Koguchi, N. (2002). Picosecond nonlinear relaxation of photoinjected carriers in a singleGaAs/Al0.3Ga0.7Asquantum dot. Physical Review B, 66(12). doi:10.1103/physrevb.66.121302Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S., & Park, D. (1996). Fine Structure Splitting in the Optical Spectra of Single GaAs Quantum Dots. Physical Review Letters, 76(16), 3005-3008. doi:10.1103/physrevlett.76.3005Abbarchi, M., Mastrandrea, C. A., Kuroda, T., Mano, T., Sakoda, K., Koguchi, N., 
 Gurioli, M. (2008). Exciton fine structure in strain-freeGaAs/Al0.3Ga0.7Asquantum dots: Extrinsic effects. Physical Review B, 78(12). doi:10.1103/physrevb.78.125321Heiss, M., Fontana, Y., Gustafsson, A., WĂŒst, G., Magen, C., O’Regan, D. D., 
 Fontcuberta i Morral, A. (2013). Self-assembled quantum dots in a nanowire system for quantum photonics. Nature Materials, 12(5), 439-444. doi:10.1038/nmat355
    corecore